用于燃料电池汽车的电动双级离心压缩机的分析建模和性能改进

Huan Li, Shuguang Zuo, Siyue Chen
{"title":"用于燃料电池汽车的电动双级离心压缩机的分析建模和性能改进","authors":"Huan Li, Shuguang Zuo, Siyue Chen","doi":"10.1177/09576509241283612","DOIUrl":null,"url":null,"abstract":"The integrated two-stage electric centrifugal compressors are most widely used in the present fuel cell vehicles. Air compressors influence the efficiency of fuel cell systems significantly, so it is crucial to improve the energy efficiency of centrifugal compressors. However, there is a lack of centrifugal compressor performance models that can reflect the thermodynamic characteristics of two-stage compression system, which is the main focus of this paper. In this paper, an analytical model of two-stage centrifugal compressor performance considering the thermodynamic characteristics of two-stage compression was first derived and experimentally validated. The single-stage centrifugal compressor model (SSCCM) can be treated as a lumped parameter model of the two-stage centrifugal compressor to predict the compressor performance. Therefore, the SSCCM and the two-stage centrifugal compressor model (TSCCM) were compared. The results show that the TSCCM is more accurate and robust. Furthermore, a novel compressor structure equipped with an intercooler in the inter-stage piping was proposed to improve the energy efficiency of the centrifugal compressor. Based on this novel structure, the TSCCM was modified. Finally, a quantitative analysis was performed to study the effect of an inter-stage intercooler on compressor efficiency. Compared to the original compressor without the inter-stage intercooler, the efficiency improvement by the inter-stage intercooler can be in the range of 3.29–3.97%, with power savings of 0.332–0.635 kW. The study can be used to support engineers and researchers in fast identifying effective solutions in terms of design for the next generation of centrifugal compressors.","PeriodicalId":20705,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical modeling and performance improvement of an electric two-stage centrifugal compressor for fuel cell vehicles\",\"authors\":\"Huan Li, Shuguang Zuo, Siyue Chen\",\"doi\":\"10.1177/09576509241283612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integrated two-stage electric centrifugal compressors are most widely used in the present fuel cell vehicles. Air compressors influence the efficiency of fuel cell systems significantly, so it is crucial to improve the energy efficiency of centrifugal compressors. However, there is a lack of centrifugal compressor performance models that can reflect the thermodynamic characteristics of two-stage compression system, which is the main focus of this paper. In this paper, an analytical model of two-stage centrifugal compressor performance considering the thermodynamic characteristics of two-stage compression was first derived and experimentally validated. The single-stage centrifugal compressor model (SSCCM) can be treated as a lumped parameter model of the two-stage centrifugal compressor to predict the compressor performance. Therefore, the SSCCM and the two-stage centrifugal compressor model (TSCCM) were compared. The results show that the TSCCM is more accurate and robust. Furthermore, a novel compressor structure equipped with an intercooler in the inter-stage piping was proposed to improve the energy efficiency of the centrifugal compressor. Based on this novel structure, the TSCCM was modified. Finally, a quantitative analysis was performed to study the effect of an inter-stage intercooler on compressor efficiency. Compared to the original compressor without the inter-stage intercooler, the efficiency improvement by the inter-stage intercooler can be in the range of 3.29–3.97%, with power savings of 0.332–0.635 kW. The study can be used to support engineers and researchers in fast identifying effective solutions in terms of design for the next generation of centrifugal compressors.\",\"PeriodicalId\":20705,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09576509241283612\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09576509241283612","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

集成式双级电动离心压缩机在目前的燃料电池汽车中应用最为广泛。空气压缩机对燃料电池系统的效率影响很大,因此提高离心压缩机的能效至关重要。然而,目前还缺乏能反映两级压缩系统热力学特性的离心压缩机性能模型,而这正是本文的重点。本文首先推导出考虑了两级压缩热力学特性的两级离心压缩机性能分析模型,并进行了实验验证。单级离心压缩机模型(SSCCM)可视为双级离心压缩机的集合参数模型,用于预测压缩机性能。因此,对 SSCCM 和双级离心压缩机模型(TSCCM)进行了比较。结果表明,TSCCM 更精确、更稳健。此外,还提出了一种在级间管道中配备中间冷却器的新型压缩机结构,以提高离心式压缩机的能效。基于这种新型结构,对 TSCCM 进行了修改。最后,对级间中间冷却器对压缩机效率的影响进行了定量分析。与未安装级间中间冷却器的原始压缩机相比,级间中间冷却器的效率提高了 3.29%-3.97%,功率节省了 0.332-0.635 kW。这项研究可为工程师和研究人员提供支持,帮助他们快速确定下一代离心式压缩机设计方面的有效解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analytical modeling and performance improvement of an electric two-stage centrifugal compressor for fuel cell vehicles
The integrated two-stage electric centrifugal compressors are most widely used in the present fuel cell vehicles. Air compressors influence the efficiency of fuel cell systems significantly, so it is crucial to improve the energy efficiency of centrifugal compressors. However, there is a lack of centrifugal compressor performance models that can reflect the thermodynamic characteristics of two-stage compression system, which is the main focus of this paper. In this paper, an analytical model of two-stage centrifugal compressor performance considering the thermodynamic characteristics of two-stage compression was first derived and experimentally validated. The single-stage centrifugal compressor model (SSCCM) can be treated as a lumped parameter model of the two-stage centrifugal compressor to predict the compressor performance. Therefore, the SSCCM and the two-stage centrifugal compressor model (TSCCM) were compared. The results show that the TSCCM is more accurate and robust. Furthermore, a novel compressor structure equipped with an intercooler in the inter-stage piping was proposed to improve the energy efficiency of the centrifugal compressor. Based on this novel structure, the TSCCM was modified. Finally, a quantitative analysis was performed to study the effect of an inter-stage intercooler on compressor efficiency. Compared to the original compressor without the inter-stage intercooler, the efficiency improvement by the inter-stage intercooler can be in the range of 3.29–3.97%, with power savings of 0.332–0.635 kW. The study can be used to support engineers and researchers in fast identifying effective solutions in terms of design for the next generation of centrifugal compressors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.90%
发文量
114
审稿时长
5.4 months
期刊介绍: The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, is dedicated to publishing peer-reviewed papers of high scientific quality on all aspects of the technology of energy conversion systems.
期刊最新文献
Studies on fuels and engine attributes powered by bio-diesel and bio-oil derived from stone apple seed (Aegle marmelos) for bioenergy Analysis of the aerothermal performance of modern commercial high-pressure turbine rotors using different levels of fidelity Analytical modeling and performance improvement of an electric two-stage centrifugal compressor for fuel cell vehicles Investigations into rubbing wear behavior of honeycomb land against labyrinth fin with periodic-cell model Secondary air induced flow structures and their interplay with the temperature field in fixed bed combustors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1