{"title":"基于晶粒的离散虚拟内结合(GB-DVIB)模型,用于模拟粒状岩石的微裂缝","authors":"Yuezong Yang, Yujie Wang, Zihan LIU","doi":"10.1615/intjmultcompeng.2024052740","DOIUrl":null,"url":null,"abstract":"The meso-structure of rock essentially affects its macroscopic mechanical behaviors. Based on the discretized virtual internal bond (DVIB) model, a grain-based DVIB (GB-DVIB) model is developed to investigate the gain-scale micro-cracking process. A meso-structure generation method for granular rock is proposed within the framework of DVIB. By this method, mineral grains, grain-boundaries and voids can be generated conveniently. Based on the relationship between macro and micro-parameters in DVIB, the mechanical parameters of meso-structure obtained by experiments can be employed to calibrate the micro-bond parameters directly. The effect of mechanical parameters of meso-structure, grain size and porosity on the macroscopic mechanical behavior is investigated, which provides a valuable reference for the application of GB-DVIB. The intra-granular and inter-granular cracks both can be reproduced by the method. A three-point bending test and an asymmetric compressive test of granite samples are simulated. The simulated micro-cracking process and macro-failure pattern are consistent with the experimental observation. The GB-DVIB provide a convenient and effective tool for researching the gain-scale micro-cracking process of granular rock.","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":"14 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A grain-based discretized virtual internal bond (GB-DVIB) model for modeling micro-cracking of granular rock\",\"authors\":\"Yuezong Yang, Yujie Wang, Zihan LIU\",\"doi\":\"10.1615/intjmultcompeng.2024052740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The meso-structure of rock essentially affects its macroscopic mechanical behaviors. Based on the discretized virtual internal bond (DVIB) model, a grain-based DVIB (GB-DVIB) model is developed to investigate the gain-scale micro-cracking process. A meso-structure generation method for granular rock is proposed within the framework of DVIB. By this method, mineral grains, grain-boundaries and voids can be generated conveniently. Based on the relationship between macro and micro-parameters in DVIB, the mechanical parameters of meso-structure obtained by experiments can be employed to calibrate the micro-bond parameters directly. The effect of mechanical parameters of meso-structure, grain size and porosity on the macroscopic mechanical behavior is investigated, which provides a valuable reference for the application of GB-DVIB. The intra-granular and inter-granular cracks both can be reproduced by the method. A three-point bending test and an asymmetric compressive test of granite samples are simulated. The simulated micro-cracking process and macro-failure pattern are consistent with the experimental observation. The GB-DVIB provide a convenient and effective tool for researching the gain-scale micro-cracking process of granular rock.\",\"PeriodicalId\":50350,\"journal\":{\"name\":\"International Journal for Multiscale Computational Engineering\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Multiscale Computational Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/intjmultcompeng.2024052740\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Multiscale Computational Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/intjmultcompeng.2024052740","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A grain-based discretized virtual internal bond (GB-DVIB) model for modeling micro-cracking of granular rock
The meso-structure of rock essentially affects its macroscopic mechanical behaviors. Based on the discretized virtual internal bond (DVIB) model, a grain-based DVIB (GB-DVIB) model is developed to investigate the gain-scale micro-cracking process. A meso-structure generation method for granular rock is proposed within the framework of DVIB. By this method, mineral grains, grain-boundaries and voids can be generated conveniently. Based on the relationship between macro and micro-parameters in DVIB, the mechanical parameters of meso-structure obtained by experiments can be employed to calibrate the micro-bond parameters directly. The effect of mechanical parameters of meso-structure, grain size and porosity on the macroscopic mechanical behavior is investigated, which provides a valuable reference for the application of GB-DVIB. The intra-granular and inter-granular cracks both can be reproduced by the method. A three-point bending test and an asymmetric compressive test of granite samples are simulated. The simulated micro-cracking process and macro-failure pattern are consistent with the experimental observation. The GB-DVIB provide a convenient and effective tool for researching the gain-scale micro-cracking process of granular rock.
期刊介绍:
The aim of the journal is to advance the research and practice in diverse areas of Multiscale Computational Science and Engineering. The journal will publish original papers and educational articles of general value to the field that will bridge the gap between modeling, simulation and design of products based on multiscale principles. The scope of the journal includes papers concerned with bridging of physical scales, ranging from the atomic level to full scale products and problems involving multiple physical processes interacting at multiple spatial and temporal scales. The emerging areas of computational nanotechnology and computational biotechnology and computational energy sciences are of particular interest to the journal. The journal is intended to be of interest and use to researchers and practitioners in academic, governmental and industrial communities.