Rugma T. P., Rishi Krishna B. S., K. Priyanga Kangeyan, Neppolian Bernaurdshaw, Abdullah Saad AlArifi and Sandeep Kumar Lakhera
{"title":"Cu2NiSnS4/g-C3N4 S 型光催化剂:界面表面阱态与氢气产生","authors":"Rugma T. P., Rishi Krishna B. S., K. Priyanga Kangeyan, Neppolian Bernaurdshaw, Abdullah Saad AlArifi and Sandeep Kumar Lakhera","doi":"10.1039/D4SE00744A","DOIUrl":null,"url":null,"abstract":"<p >Graphitic carbon nitride (g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>), a two-dimensional semiconducting material, shows promise in energy conversion but faces challenges such as rapid charge carrier recombination and poor visible-light absorption. To address these issues, we integrated Cu<small><sub>2</sub></small>NiSnS<small><sub>4</sub></small> (CNTS) with g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> using an ultrasonication-assisted microwave irradiation method and observed that incorporating g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> with 5 wt% CNTS produced 4.6 μmol of sacrificial hydrogen under direct sunlight irradiation over 4 h. This presents a significant 38-fold increase in photocatalytic hydrogen production compared to that of bare g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>. However, increasing the CNTS loading beyond 5 wt% gradually decreased hydrogen production. Higher CNTS loading also caused gradual quenching of photoluminescence spectra, which contradicts the hydrogen evolution results. On the other hand, time-resolved photoluminescence measurements indicated a shorter charge carrier lifetime in the composite, suggesting higher non-radiative recombination and/or a faster charge carrier separation rate. The discrepancies between PL spectra, TRPL measurements, and hydrogen production suggest the presence of a higher density of surface trap states at the CNTS/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> interface. These trap states likely facilitate faster charge separation at lower CNTS loadings but lead to increased non-radiative recombination at higher loadings, thereby reducing hydrogen production. The CNTS/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> photocatalysts showed outstanding stability over a period of ten cycles under a xenon lamp. This work provides new insights into interfacial charge transfer dynamics in heterojunction photocatalysts.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 19","pages":" 4461-4471"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu2NiSnS4/g-C3N4 S-scheme photocatalysts: interfacial surface trap states vs. hydrogen production†\",\"authors\":\"Rugma T. P., Rishi Krishna B. S., K. Priyanga Kangeyan, Neppolian Bernaurdshaw, Abdullah Saad AlArifi and Sandeep Kumar Lakhera\",\"doi\":\"10.1039/D4SE00744A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Graphitic carbon nitride (g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>), a two-dimensional semiconducting material, shows promise in energy conversion but faces challenges such as rapid charge carrier recombination and poor visible-light absorption. To address these issues, we integrated Cu<small><sub>2</sub></small>NiSnS<small><sub>4</sub></small> (CNTS) with g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> using an ultrasonication-assisted microwave irradiation method and observed that incorporating g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> with 5 wt% CNTS produced 4.6 μmol of sacrificial hydrogen under direct sunlight irradiation over 4 h. This presents a significant 38-fold increase in photocatalytic hydrogen production compared to that of bare g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>. However, increasing the CNTS loading beyond 5 wt% gradually decreased hydrogen production. Higher CNTS loading also caused gradual quenching of photoluminescence spectra, which contradicts the hydrogen evolution results. On the other hand, time-resolved photoluminescence measurements indicated a shorter charge carrier lifetime in the composite, suggesting higher non-radiative recombination and/or a faster charge carrier separation rate. The discrepancies between PL spectra, TRPL measurements, and hydrogen production suggest the presence of a higher density of surface trap states at the CNTS/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> interface. These trap states likely facilitate faster charge separation at lower CNTS loadings but lead to increased non-radiative recombination at higher loadings, thereby reducing hydrogen production. The CNTS/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> photocatalysts showed outstanding stability over a period of ten cycles under a xenon lamp. This work provides new insights into interfacial charge transfer dynamics in heterojunction photocatalysts.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 19\",\"pages\":\" 4461-4471\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00744a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00744a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Cu2NiSnS4/g-C3N4 S-scheme photocatalysts: interfacial surface trap states vs. hydrogen production†
Graphitic carbon nitride (g-C3N4), a two-dimensional semiconducting material, shows promise in energy conversion but faces challenges such as rapid charge carrier recombination and poor visible-light absorption. To address these issues, we integrated Cu2NiSnS4 (CNTS) with g-C3N4 using an ultrasonication-assisted microwave irradiation method and observed that incorporating g-C3N4 with 5 wt% CNTS produced 4.6 μmol of sacrificial hydrogen under direct sunlight irradiation over 4 h. This presents a significant 38-fold increase in photocatalytic hydrogen production compared to that of bare g-C3N4. However, increasing the CNTS loading beyond 5 wt% gradually decreased hydrogen production. Higher CNTS loading also caused gradual quenching of photoluminescence spectra, which contradicts the hydrogen evolution results. On the other hand, time-resolved photoluminescence measurements indicated a shorter charge carrier lifetime in the composite, suggesting higher non-radiative recombination and/or a faster charge carrier separation rate. The discrepancies between PL spectra, TRPL measurements, and hydrogen production suggest the presence of a higher density of surface trap states at the CNTS/g-C3N4 interface. These trap states likely facilitate faster charge separation at lower CNTS loadings but lead to increased non-radiative recombination at higher loadings, thereby reducing hydrogen production. The CNTS/g-C3N4 photocatalysts showed outstanding stability over a period of ten cycles under a xenon lamp. This work provides new insights into interfacial charge transfer dynamics in heterojunction photocatalysts.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.