Omar E. Khedr, Naira M. Saad, ElSayed M. ElRabaie, Ashraf A. M. Khalaf
{"title":"利用相对灵敏度极高的方芯光子晶体光纤 (SC-PCF) 进行基孔肯雅病毒的早期诊断","authors":"Omar E. Khedr, Naira M. Saad, ElSayed M. ElRabaie, Ashraf A. M. Khalaf","doi":"10.1007/s11082-024-07353-z","DOIUrl":null,"url":null,"abstract":"<p>Chikungunya virus (CHIKV) poses a significant public health threat due to its capacity to cause widespread and debilitating outbreaks. The virus is responsible for CHIKV fever, a disease characterized by severe joint pain, sudden onset of fever, headache, muscle pain, and rash. The virus has been reported in various regions globally, with outbreaks occurring in parts of Africa, Asia, the Americas, and the Indian subcontinent. Consequently, the scientific community expends substantial efforts in developing dependable, rapid, highly sensitive, and cost-effective techniques in order to identify the CHIKV virus. In this study, an innovative biomedical sensor using photonic crystal fiber technology enables precise detection of the CHIKV virus through uric acid, normal and infected plasma, red blood cells, and platelets in the blood. The introduced sensor identifies those kinds with extremely increased relative sensitivity and minimal losses in contrast to alternative photonic crystal fiber-based biosensors. The introduced sensor showcases a minimal confinement loss of 2.25 × 10<sup>− 13</sup> cm<sup>− 1</sup>, a relative sensitivity of 99.37%, an effective area of 1.36 × 10<sup>5</sup> µm<sup>2</sup>, with a minimal effective material loss of 0.001966 cm<sup>–1</sup>, a numerical aperture of 0.1874, and low dispersion of 0.06. Also, the demonstrated sensor is able to function within the terahertz spectrum, covering a substantial span from 0.8 to 2.6 THz. Furthermore, an extensive comparison analysis is performed between the showcased sensor and related literature on photonic crystal fibers to verify the reliability and effectiveness of the introduced structure.</p>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early diagnosis of Chikungunya virus utilizing square core photonic crystal fiber (SC-PCF) with extremely high relative sensitivity\",\"authors\":\"Omar E. Khedr, Naira M. Saad, ElSayed M. ElRabaie, Ashraf A. M. Khalaf\",\"doi\":\"10.1007/s11082-024-07353-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chikungunya virus (CHIKV) poses a significant public health threat due to its capacity to cause widespread and debilitating outbreaks. The virus is responsible for CHIKV fever, a disease characterized by severe joint pain, sudden onset of fever, headache, muscle pain, and rash. The virus has been reported in various regions globally, with outbreaks occurring in parts of Africa, Asia, the Americas, and the Indian subcontinent. Consequently, the scientific community expends substantial efforts in developing dependable, rapid, highly sensitive, and cost-effective techniques in order to identify the CHIKV virus. In this study, an innovative biomedical sensor using photonic crystal fiber technology enables precise detection of the CHIKV virus through uric acid, normal and infected plasma, red blood cells, and platelets in the blood. The introduced sensor identifies those kinds with extremely increased relative sensitivity and minimal losses in contrast to alternative photonic crystal fiber-based biosensors. The introduced sensor showcases a minimal confinement loss of 2.25 × 10<sup>− 13</sup> cm<sup>− 1</sup>, a relative sensitivity of 99.37%, an effective area of 1.36 × 10<sup>5</sup> µm<sup>2</sup>, with a minimal effective material loss of 0.001966 cm<sup>–1</sup>, a numerical aperture of 0.1874, and low dispersion of 0.06. Also, the demonstrated sensor is able to function within the terahertz spectrum, covering a substantial span from 0.8 to 2.6 THz. Furthermore, an extensive comparison analysis is performed between the showcased sensor and related literature on photonic crystal fibers to verify the reliability and effectiveness of the introduced structure.</p>\",\"PeriodicalId\":720,\"journal\":{\"name\":\"Optical and Quantum Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11082-024-07353-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11082-024-07353-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Early diagnosis of Chikungunya virus utilizing square core photonic crystal fiber (SC-PCF) with extremely high relative sensitivity
Chikungunya virus (CHIKV) poses a significant public health threat due to its capacity to cause widespread and debilitating outbreaks. The virus is responsible for CHIKV fever, a disease characterized by severe joint pain, sudden onset of fever, headache, muscle pain, and rash. The virus has been reported in various regions globally, with outbreaks occurring in parts of Africa, Asia, the Americas, and the Indian subcontinent. Consequently, the scientific community expends substantial efforts in developing dependable, rapid, highly sensitive, and cost-effective techniques in order to identify the CHIKV virus. In this study, an innovative biomedical sensor using photonic crystal fiber technology enables precise detection of the CHIKV virus through uric acid, normal and infected plasma, red blood cells, and platelets in the blood. The introduced sensor identifies those kinds with extremely increased relative sensitivity and minimal losses in contrast to alternative photonic crystal fiber-based biosensors. The introduced sensor showcases a minimal confinement loss of 2.25 × 10− 13 cm− 1, a relative sensitivity of 99.37%, an effective area of 1.36 × 105 µm2, with a minimal effective material loss of 0.001966 cm–1, a numerical aperture of 0.1874, and low dispersion of 0.06. Also, the demonstrated sensor is able to function within the terahertz spectrum, covering a substantial span from 0.8 to 2.6 THz. Furthermore, an extensive comparison analysis is performed between the showcased sensor and related literature on photonic crystal fibers to verify the reliability and effectiveness of the introduced structure.
期刊介绍:
Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest.
Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.