Adnan Asghar, Sumera Dero, Liaquat Ali Lund, Zahir Shah, Mansoor H. Alshehri, Narcisa Vrinceanu
{"title":"磁化辐射杂化铁流体在收缩/拉伸表面上的急剧磁力滑动效应","authors":"Adnan Asghar, Sumera Dero, Liaquat Ali Lund, Zahir Shah, Mansoor H. Alshehri, Narcisa Vrinceanu","doi":"10.1515/phys-2024-0052","DOIUrl":null,"url":null,"abstract":"The significance of the study comes in the fact that it investigates complex fluid dynamics and magnetohydrodynamics phenomena, which have the potential to be applied in a variety of domains, such as physics, engineering, and materials science. Their exceptional physical significance stems from their ability to combine the unique properties of multiple substances to provide the desired functions and performance characteristics. However, in this study, the numerical studies of slip effects on magnetized radiatively hybridized ferrofluid flow with acute magnetic force over stretching/shrinking surface were investigated. The main objective of current research is to examine the influence of solid volume percentage of cobalt ferrite, the sharply oriented magnetic field, and velocity slip factors on the behaviour of skin friction and heat transfer subjected to suction effect. Moreover, the study included an analysis of the behaviour of velocity and temperature profiles in relation to the consideration of the magnetic parameter, the solid volume percentage of cobalt ferrite, the Prandtl number, and the thermal radiation parameter. The equations that regulate the system were converted partial differential equations into ordinary differential equations by making use of the relevant similarity variables, and then, it solved with bvp4c MATLAB software. The boundary requirements are satisfied in particular parameter ranges where dual solutions are achieved. Besides, dual solutions were obtained in shrinking zone. At critical points, the two dual solutions intersect; however, after these points, no further solutions are accessible. The heat transfer rate decreased the velocity slip factor, while it increased the thermal slip factor. In addition, the thickness of the thermal boundary layer increased thermal radiation, while simultaneously reducing the Prandtl number. Besides, the temperature profile improves when the value of cobalt ferrite is higher. In summary, according to stability analysis, he first solution is stable and the second solution is unstable.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"70 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slip effects on magnetized radiatively hybridized ferrofluid flow with acute magnetic force over shrinking/stretching surface\",\"authors\":\"Adnan Asghar, Sumera Dero, Liaquat Ali Lund, Zahir Shah, Mansoor H. Alshehri, Narcisa Vrinceanu\",\"doi\":\"10.1515/phys-2024-0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The significance of the study comes in the fact that it investigates complex fluid dynamics and magnetohydrodynamics phenomena, which have the potential to be applied in a variety of domains, such as physics, engineering, and materials science. Their exceptional physical significance stems from their ability to combine the unique properties of multiple substances to provide the desired functions and performance characteristics. However, in this study, the numerical studies of slip effects on magnetized radiatively hybridized ferrofluid flow with acute magnetic force over stretching/shrinking surface were investigated. The main objective of current research is to examine the influence of solid volume percentage of cobalt ferrite, the sharply oriented magnetic field, and velocity slip factors on the behaviour of skin friction and heat transfer subjected to suction effect. Moreover, the study included an analysis of the behaviour of velocity and temperature profiles in relation to the consideration of the magnetic parameter, the solid volume percentage of cobalt ferrite, the Prandtl number, and the thermal radiation parameter. The equations that regulate the system were converted partial differential equations into ordinary differential equations by making use of the relevant similarity variables, and then, it solved with bvp4c MATLAB software. The boundary requirements are satisfied in particular parameter ranges where dual solutions are achieved. Besides, dual solutions were obtained in shrinking zone. At critical points, the two dual solutions intersect; however, after these points, no further solutions are accessible. The heat transfer rate decreased the velocity slip factor, while it increased the thermal slip factor. In addition, the thickness of the thermal boundary layer increased thermal radiation, while simultaneously reducing the Prandtl number. Besides, the temperature profile improves when the value of cobalt ferrite is higher. In summary, according to stability analysis, he first solution is stable and the second solution is unstable.\",\"PeriodicalId\":48710,\"journal\":{\"name\":\"Open Physics\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/phys-2024-0052\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2024-0052","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Slip effects on magnetized radiatively hybridized ferrofluid flow with acute magnetic force over shrinking/stretching surface
The significance of the study comes in the fact that it investigates complex fluid dynamics and magnetohydrodynamics phenomena, which have the potential to be applied in a variety of domains, such as physics, engineering, and materials science. Their exceptional physical significance stems from their ability to combine the unique properties of multiple substances to provide the desired functions and performance characteristics. However, in this study, the numerical studies of slip effects on magnetized radiatively hybridized ferrofluid flow with acute magnetic force over stretching/shrinking surface were investigated. The main objective of current research is to examine the influence of solid volume percentage of cobalt ferrite, the sharply oriented magnetic field, and velocity slip factors on the behaviour of skin friction and heat transfer subjected to suction effect. Moreover, the study included an analysis of the behaviour of velocity and temperature profiles in relation to the consideration of the magnetic parameter, the solid volume percentage of cobalt ferrite, the Prandtl number, and the thermal radiation parameter. The equations that regulate the system were converted partial differential equations into ordinary differential equations by making use of the relevant similarity variables, and then, it solved with bvp4c MATLAB software. The boundary requirements are satisfied in particular parameter ranges where dual solutions are achieved. Besides, dual solutions were obtained in shrinking zone. At critical points, the two dual solutions intersect; however, after these points, no further solutions are accessible. The heat transfer rate decreased the velocity slip factor, while it increased the thermal slip factor. In addition, the thickness of the thermal boundary layer increased thermal radiation, while simultaneously reducing the Prandtl number. Besides, the temperature profile improves when the value of cobalt ferrite is higher. In summary, according to stability analysis, he first solution is stable and the second solution is unstable.
期刊介绍:
Open Physics is a peer-reviewed, open access, electronic journal devoted to the publication of fundamental research results in all fields of physics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.