{"title":"预测二维 Hf2TeIX(X = I,Br)单层中的迷人谷特性","authors":"Kaiyuan He, Peiji Wang","doi":"10.3390/cryst14090794","DOIUrl":null,"url":null,"abstract":"The valley degree of freedom, as a new information carrier, is important for basic physical research and the development of advanced devices. Herein, using first-principle calculations, we predict that two-dimensional Hf2TeIX (X = I, Br) monolayers harbor intriguing valley properties. Without considering spin–orbit coupling (SOC), the Hf2TeI2 monolayer has a semi-metallic nature, with Dirac cones located at the high-symmetry point K, and feature, with considerable Fermi velocity. When the SOC is taken into account, a band gap opening of 271 meV can be observed at the Dirac cones. More interestingly, the Hf2TeIBr monolayer exhibits intrinsic spatial inversion symmetry breaking, which leads to the emergence of valley-contrasting physics under SOC. This is demonstrated by the presence of spin–valley splitting and opposite Berry curvature at adjacent K points. Besides, the spin–valley splitting, the band gap and magnitude of the Berry curvature of the Hf2TeIBr monolayer can be effectively tuned by strain engineering. These findings contribute significantly to the design of valleytronic devices and extend opportunities for exploring two-dimensional valley materials.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"28 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Intriguing Valley Properties in Two-Dimensional Hf2TeIX (X = I, Br) Monolayers\",\"authors\":\"Kaiyuan He, Peiji Wang\",\"doi\":\"10.3390/cryst14090794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The valley degree of freedom, as a new information carrier, is important for basic physical research and the development of advanced devices. Herein, using first-principle calculations, we predict that two-dimensional Hf2TeIX (X = I, Br) monolayers harbor intriguing valley properties. Without considering spin–orbit coupling (SOC), the Hf2TeI2 monolayer has a semi-metallic nature, with Dirac cones located at the high-symmetry point K, and feature, with considerable Fermi velocity. When the SOC is taken into account, a band gap opening of 271 meV can be observed at the Dirac cones. More interestingly, the Hf2TeIBr monolayer exhibits intrinsic spatial inversion symmetry breaking, which leads to the emergence of valley-contrasting physics under SOC. This is demonstrated by the presence of spin–valley splitting and opposite Berry curvature at adjacent K points. Besides, the spin–valley splitting, the band gap and magnitude of the Berry curvature of the Hf2TeIBr monolayer can be effectively tuned by strain engineering. These findings contribute significantly to the design of valleytronic devices and extend opportunities for exploring two-dimensional valley materials.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14090794\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090794","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Prediction of Intriguing Valley Properties in Two-Dimensional Hf2TeIX (X = I, Br) Monolayers
The valley degree of freedom, as a new information carrier, is important for basic physical research and the development of advanced devices. Herein, using first-principle calculations, we predict that two-dimensional Hf2TeIX (X = I, Br) monolayers harbor intriguing valley properties. Without considering spin–orbit coupling (SOC), the Hf2TeI2 monolayer has a semi-metallic nature, with Dirac cones located at the high-symmetry point K, and feature, with considerable Fermi velocity. When the SOC is taken into account, a band gap opening of 271 meV can be observed at the Dirac cones. More interestingly, the Hf2TeIBr monolayer exhibits intrinsic spatial inversion symmetry breaking, which leads to the emergence of valley-contrasting physics under SOC. This is demonstrated by the presence of spin–valley splitting and opposite Berry curvature at adjacent K points. Besides, the spin–valley splitting, the band gap and magnitude of the Berry curvature of the Hf2TeIBr monolayer can be effectively tuned by strain engineering. These findings contribute significantly to the design of valleytronic devices and extend opportunities for exploring two-dimensional valley materials.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.