Shaokun Wu, Mingyue He, Mei Yang, Bijie Peng, Yujia Shi, Kaiyue Sun
{"title":"含铜矿床氧化带次生矿物的近红外光谱研究","authors":"Shaokun Wu, Mingyue He, Mei Yang, Bijie Peng, Yujia Shi, Kaiyue Sun","doi":"10.3390/cryst14090791","DOIUrl":null,"url":null,"abstract":"This study measured the infrared spectra of secondary minerals in the oxidation zones of three types of copper ores: dioptase, malachite, and azurite, and assigned the peak positions of OH stretching vibrations and the origins of OH combination vibrations. Dioptase contains three types of water molecules with different orientations within its ring channels, which exhibit six kinds of OH stretching vibrations in the 3000–3600 cm−1 range; the bond length range is 2.652 to 2.887 Å. Among them, the 3443 cm−1 band shows strong near-infrared activity and combines with Si–O vibrations or OH bending vibrations in the structure, resulting in five combination vibration peaks in the 4000–5000 cm−1 range. Malachite contains two inequivalent hydroxyls in its structure, leading to two OH stretching vibrations in the high-frequency region located at 3314 and 3402 cm−1, respectively. Azurite contains only one type of hydroxyl, and thus only one characteristic OH stretching vibration is present at 3424 cm−1. The OH stretching vibrations of malachite and azurite mainly combine with [CO3]2− vibrations or OH bending vibrations, leading to six and five combination peaks in the OH combination vibration region, respectively. By analyzing the combination of peak positions at 4341 cm−1 in the near-infrared spectrum, the merged OH bending vibration at 921 cm−1 in azurite was discovered. Spectroscopic research on secondary minerals can better provide a basis for ore exploration and geological remote sensing.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-Infrared Spectroscopic Study of Secondary Minerals in the Oxidation Zones of Copper-Bearing Deposits\",\"authors\":\"Shaokun Wu, Mingyue He, Mei Yang, Bijie Peng, Yujia Shi, Kaiyue Sun\",\"doi\":\"10.3390/cryst14090791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study measured the infrared spectra of secondary minerals in the oxidation zones of three types of copper ores: dioptase, malachite, and azurite, and assigned the peak positions of OH stretching vibrations and the origins of OH combination vibrations. Dioptase contains three types of water molecules with different orientations within its ring channels, which exhibit six kinds of OH stretching vibrations in the 3000–3600 cm−1 range; the bond length range is 2.652 to 2.887 Å. Among them, the 3443 cm−1 band shows strong near-infrared activity and combines with Si–O vibrations or OH bending vibrations in the structure, resulting in five combination vibration peaks in the 4000–5000 cm−1 range. Malachite contains two inequivalent hydroxyls in its structure, leading to two OH stretching vibrations in the high-frequency region located at 3314 and 3402 cm−1, respectively. Azurite contains only one type of hydroxyl, and thus only one characteristic OH stretching vibration is present at 3424 cm−1. The OH stretching vibrations of malachite and azurite mainly combine with [CO3]2− vibrations or OH bending vibrations, leading to six and five combination peaks in the OH combination vibration region, respectively. By analyzing the combination of peak positions at 4341 cm−1 in the near-infrared spectrum, the merged OH bending vibration at 921 cm−1 in azurite was discovered. Spectroscopic research on secondary minerals can better provide a basis for ore exploration and geological remote sensing.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14090791\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090791","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Near-Infrared Spectroscopic Study of Secondary Minerals in the Oxidation Zones of Copper-Bearing Deposits
This study measured the infrared spectra of secondary minerals in the oxidation zones of three types of copper ores: dioptase, malachite, and azurite, and assigned the peak positions of OH stretching vibrations and the origins of OH combination vibrations. Dioptase contains three types of water molecules with different orientations within its ring channels, which exhibit six kinds of OH stretching vibrations in the 3000–3600 cm−1 range; the bond length range is 2.652 to 2.887 Å. Among them, the 3443 cm−1 band shows strong near-infrared activity and combines with Si–O vibrations or OH bending vibrations in the structure, resulting in five combination vibration peaks in the 4000–5000 cm−1 range. Malachite contains two inequivalent hydroxyls in its structure, leading to two OH stretching vibrations in the high-frequency region located at 3314 and 3402 cm−1, respectively. Azurite contains only one type of hydroxyl, and thus only one characteristic OH stretching vibration is present at 3424 cm−1. The OH stretching vibrations of malachite and azurite mainly combine with [CO3]2− vibrations or OH bending vibrations, leading to six and five combination peaks in the OH combination vibration region, respectively. By analyzing the combination of peak positions at 4341 cm−1 in the near-infrared spectrum, the merged OH bending vibration at 921 cm−1 in azurite was discovered. Spectroscopic research on secondary minerals can better provide a basis for ore exploration and geological remote sensing.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.