{"title":"溶解和老化热处理对铬镍铁合金 625 沉积金属微观结构和机械性能的影响","authors":"Yingdi Wang, Yunhai Su, Zhiyong Dai","doi":"10.3390/cryst14090764","DOIUrl":null,"url":null,"abstract":"Inconel 625 deposited metal was prepared by gas metal arc welding. The solid solution treatment temperature was set at 1140 °C for 4 h using the DSC test method, followed by secondary aging at 750 °C/4 h and 650 °C/24 h. The specimens in the prepared state and after heat treatment were subjected to high temperature tensile at 600 °C, respectively. The fracture morphology, thermal deformation behavior, and strengthening mechanism of the samples in different states were analyzed. The results showed that the stress–strain curves of the deposited metals exhibited obvious work-hardening behavior at 600 °C. The solid solution and aging heat-treated samples have higher tensile and yield strength, but the plasticity is obviously lower than that of the deposited metal. It was also found that the γ″ phase and M23C6 carbides, as well as the continuous stacking faults in the alloy, were the main reasons for the increase in tensile strength of the solution and aging heat-treated sample.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"6 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Solution and Aging Heat Treatment on the Microstructure and Mechanical Properties of Inconel 625 Deposited Metal\",\"authors\":\"Yingdi Wang, Yunhai Su, Zhiyong Dai\",\"doi\":\"10.3390/cryst14090764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inconel 625 deposited metal was prepared by gas metal arc welding. The solid solution treatment temperature was set at 1140 °C for 4 h using the DSC test method, followed by secondary aging at 750 °C/4 h and 650 °C/24 h. The specimens in the prepared state and after heat treatment were subjected to high temperature tensile at 600 °C, respectively. The fracture morphology, thermal deformation behavior, and strengthening mechanism of the samples in different states were analyzed. The results showed that the stress–strain curves of the deposited metals exhibited obvious work-hardening behavior at 600 °C. The solid solution and aging heat-treated samples have higher tensile and yield strength, but the plasticity is obviously lower than that of the deposited metal. It was also found that the γ″ phase and M23C6 carbides, as well as the continuous stacking faults in the alloy, were the main reasons for the increase in tensile strength of the solution and aging heat-treated sample.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14090764\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090764","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Effect of Solution and Aging Heat Treatment on the Microstructure and Mechanical Properties of Inconel 625 Deposited Metal
Inconel 625 deposited metal was prepared by gas metal arc welding. The solid solution treatment temperature was set at 1140 °C for 4 h using the DSC test method, followed by secondary aging at 750 °C/4 h and 650 °C/24 h. The specimens in the prepared state and after heat treatment were subjected to high temperature tensile at 600 °C, respectively. The fracture morphology, thermal deformation behavior, and strengthening mechanism of the samples in different states were analyzed. The results showed that the stress–strain curves of the deposited metals exhibited obvious work-hardening behavior at 600 °C. The solid solution and aging heat-treated samples have higher tensile and yield strength, but the plasticity is obviously lower than that of the deposited metal. It was also found that the γ″ phase and M23C6 carbides, as well as the continuous stacking faults in the alloy, were the main reasons for the increase in tensile strength of the solution and aging heat-treated sample.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.