Kevin D. Vallejo, Zachery E. Cresswell, Volodymyr Buturlim, Brian S. Newell, Krzysztof Gofryk, Brelon J. May
{"title":"利用分子束外延技术在氧化镁 (001) 基质上合成氮化钐薄膜","authors":"Kevin D. Vallejo, Zachery E. Cresswell, Volodymyr Buturlim, Brian S. Newell, Krzysztof Gofryk, Brelon J. May","doi":"10.3390/cryst14090765","DOIUrl":null,"url":null,"abstract":"Rare-earth nitrides are an exciting family of materials with a wide variety of properties desirable for new physics and applications in spintronics and superconducting devices. Among them, samarium nitride is an interesting compound reported to have ferromagnetic behavior coupled with the potential existence of p-wave superconductivity. Synthesis of high-quality thin films is essential in order to manifest these behaviors and understand the impact that vacancies, structural distortions, and doping can have on these properties. In this study, we report the synthesis of samarium nitride monocrystalline thin films on magnesium oxide (001) substrates with a chromium nitride capping layer using molecular beam epitaxy (MBE). We observed a high-quality monocrystalline SmN film with matching orientation to the substrate, then optimized the growth temperature. Despite the initial 2 nm of growth showing formation of a potential samarium oxide layer, the subsequent layers showed high-quality SmN, with semiconducting behavior revealed by an increase in resistivity with decreasing temperature. These promising results highlight the importance of studying diverse heteroepitaxial schemes and open the door for integration of rare-earth nitrides and transition metal nitrides for future spintronic devices.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"59 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Samarium Nitride Thin Films on Magnesium Oxide (001) Substrates Using Molecular Beam Epitaxy\",\"authors\":\"Kevin D. Vallejo, Zachery E. Cresswell, Volodymyr Buturlim, Brian S. Newell, Krzysztof Gofryk, Brelon J. May\",\"doi\":\"10.3390/cryst14090765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rare-earth nitrides are an exciting family of materials with a wide variety of properties desirable for new physics and applications in spintronics and superconducting devices. Among them, samarium nitride is an interesting compound reported to have ferromagnetic behavior coupled with the potential existence of p-wave superconductivity. Synthesis of high-quality thin films is essential in order to manifest these behaviors and understand the impact that vacancies, structural distortions, and doping can have on these properties. In this study, we report the synthesis of samarium nitride monocrystalline thin films on magnesium oxide (001) substrates with a chromium nitride capping layer using molecular beam epitaxy (MBE). We observed a high-quality monocrystalline SmN film with matching orientation to the substrate, then optimized the growth temperature. Despite the initial 2 nm of growth showing formation of a potential samarium oxide layer, the subsequent layers showed high-quality SmN, with semiconducting behavior revealed by an increase in resistivity with decreasing temperature. These promising results highlight the importance of studying diverse heteroepitaxial schemes and open the door for integration of rare-earth nitrides and transition metal nitrides for future spintronic devices.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14090765\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090765","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
摘要
稀土氮化物是一个令人兴奋的材料家族,它具有各种各样的特性,是自旋电子学和超导设备中新物理学和应用的理想材料。其中,氮化钐是一种有趣的化合物,据报道它不仅具有铁磁性,还可能具有 p 波超导性。为了体现这些行为,了解空位、结构畸变和掺杂对这些特性的影响,合成高质量的薄膜至关重要。在本研究中,我们报告了利用分子束外延(MBE)技术在带有氮化铬封盖层的氧化镁(001)基底上合成氮化钐单晶薄膜的情况。我们观察到了与基底取向匹配的高质量单晶 SmN 薄膜,然后优化了生长温度。尽管在最初 2 纳米的生长过程中形成了潜在的氧化钐层,但随后的薄膜层显示出高质量的 SmN,电阻率随温度降低而增加,显示出半导体特性。这些充满希望的结果凸显了研究各种异质外延方案的重要性,并为未来自旋电子器件整合稀土氮化物和过渡金属氮化物打开了大门。
Synthesis of Samarium Nitride Thin Films on Magnesium Oxide (001) Substrates Using Molecular Beam Epitaxy
Rare-earth nitrides are an exciting family of materials with a wide variety of properties desirable for new physics and applications in spintronics and superconducting devices. Among them, samarium nitride is an interesting compound reported to have ferromagnetic behavior coupled with the potential existence of p-wave superconductivity. Synthesis of high-quality thin films is essential in order to manifest these behaviors and understand the impact that vacancies, structural distortions, and doping can have on these properties. In this study, we report the synthesis of samarium nitride monocrystalline thin films on magnesium oxide (001) substrates with a chromium nitride capping layer using molecular beam epitaxy (MBE). We observed a high-quality monocrystalline SmN film with matching orientation to the substrate, then optimized the growth temperature. Despite the initial 2 nm of growth showing formation of a potential samarium oxide layer, the subsequent layers showed high-quality SmN, with semiconducting behavior revealed by an increase in resistivity with decreasing temperature. These promising results highlight the importance of studying diverse heteroepitaxial schemes and open the door for integration of rare-earth nitrides and transition metal nitrides for future spintronic devices.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.