Franziska U. Huschmann, Janis Mueller, Alexander Metz, Moritz Ruf, Johanna Senst, Serghei Glinca, Johannes Schiebel, Andreas Heine, Gerhard Klebe
{"title":"通过目录进行筛选、生长和验证:利用天然产物库中的合成中间体,通过晶体学发现天冬氨酸蛋白酶的片段","authors":"Franziska U. Huschmann, Janis Mueller, Alexander Metz, Moritz Ruf, Johanna Senst, Serghei Glinca, Johannes Schiebel, Andreas Heine, Gerhard Klebe","doi":"10.3390/cryst14090755","DOIUrl":null,"url":null,"abstract":"Fragment screening directly on protein crystals has been applied using AnalytiCon’s collection of intermediates that have been utilized to generate libraries of larger synthetic natural product-like molecules. The fragments with well-balanced physicochemical properties show an impressively high hit rate for a screen using the aspartic protease endothiapepsin. The subsequent validation and expansion of the discovered fragment hits benefits from AnalytiCon’s comprehensive library design. Since the screened fragments are intermediates that share a common core with larger and closely related analogs with modulated substitution patterns, they allow for the retrieval of off-the-shelf follow-up compounds, which enable the development of design strategies for fragment optimization. A promising bicyclic core scaffold found in several fragment hits could be validated by selecting a set of enlarged follow-up compounds. Due to unexpected changes in binding mode and no significant improvement in ligand efficiency, this series was quickly deemed unsuitable and therefore discontinued. The structures of follow-up compounds of two other fragments helped to evaluate a putative fusion of two overlapping fragment hits. A design concept on how to fuse the two fragments could be proposed and helps to plan a suitable substitution pattern and promising central bridging element.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"28 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening, Growing, and Validation by Catalog: Using Synthetic Intermediates from Natural Product Libraries to Discover Fragments for an Aspartic Protease Through Crystallography\",\"authors\":\"Franziska U. Huschmann, Janis Mueller, Alexander Metz, Moritz Ruf, Johanna Senst, Serghei Glinca, Johannes Schiebel, Andreas Heine, Gerhard Klebe\",\"doi\":\"10.3390/cryst14090755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fragment screening directly on protein crystals has been applied using AnalytiCon’s collection of intermediates that have been utilized to generate libraries of larger synthetic natural product-like molecules. The fragments with well-balanced physicochemical properties show an impressively high hit rate for a screen using the aspartic protease endothiapepsin. The subsequent validation and expansion of the discovered fragment hits benefits from AnalytiCon’s comprehensive library design. Since the screened fragments are intermediates that share a common core with larger and closely related analogs with modulated substitution patterns, they allow for the retrieval of off-the-shelf follow-up compounds, which enable the development of design strategies for fragment optimization. A promising bicyclic core scaffold found in several fragment hits could be validated by selecting a set of enlarged follow-up compounds. Due to unexpected changes in binding mode and no significant improvement in ligand efficiency, this series was quickly deemed unsuitable and therefore discontinued. The structures of follow-up compounds of two other fragments helped to evaluate a putative fusion of two overlapping fragment hits. A design concept on how to fuse the two fragments could be proposed and helps to plan a suitable substitution pattern and promising central bridging element.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14090755\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090755","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Screening, Growing, and Validation by Catalog: Using Synthetic Intermediates from Natural Product Libraries to Discover Fragments for an Aspartic Protease Through Crystallography
Fragment screening directly on protein crystals has been applied using AnalytiCon’s collection of intermediates that have been utilized to generate libraries of larger synthetic natural product-like molecules. The fragments with well-balanced physicochemical properties show an impressively high hit rate for a screen using the aspartic protease endothiapepsin. The subsequent validation and expansion of the discovered fragment hits benefits from AnalytiCon’s comprehensive library design. Since the screened fragments are intermediates that share a common core with larger and closely related analogs with modulated substitution patterns, they allow for the retrieval of off-the-shelf follow-up compounds, which enable the development of design strategies for fragment optimization. A promising bicyclic core scaffold found in several fragment hits could be validated by selecting a set of enlarged follow-up compounds. Due to unexpected changes in binding mode and no significant improvement in ligand efficiency, this series was quickly deemed unsuitable and therefore discontinued. The structures of follow-up compounds of two other fragments helped to evaluate a putative fusion of two overlapping fragment hits. A design concept on how to fuse the two fragments could be proposed and helps to plan a suitable substitution pattern and promising central bridging element.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.