Damjan Strnad, Danijel Žlaus, Andrej Nerat, Borut Žalik
{"title":"利用链码高效压缩存储和快速重建大型二进制图像","authors":"Damjan Strnad, Danijel Žlaus, Andrej Nerat, Borut Žalik","doi":"10.1007/s11042-024-20199-7","DOIUrl":null,"url":null,"abstract":"<p>Large binary images are used in many modern applications of image processing. For instance, they serve as inputs or target masks for training machine learning (ML) models in computer vision and image segmentation. Storing large binary images in limited memory and loading them repeatedly on demand, which is common in ML, calls for efficient image encoding and decoding mechanisms. In the paper, we propose an encoding scheme for efficient compressed storage of large binary images based on chain codes, and introduce a new single-pass algorithm for fast parallel reconstruction of raster images from the encoded representation. We use three large real-life binary masks to test the efficiency of the proposed method, which were derived from vector layers of single-class objects – a building cadaster, a woody vegetation landscape feature map, and a road network map. We show that the masks encoded by the proposed method require significantly less storage space than standard lossless compression formats. We further compared the proposed method for mask reconstruction from chain codes with a recent state-of-the-art algorithm, and achieved between <span>\\(12\\%\\)</span> and <span>\\(33\\%\\)</span> faster reconstruction on test data.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"168 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient compressed storage and fast reconstruction of large binary images using chain codes\",\"authors\":\"Damjan Strnad, Danijel Žlaus, Andrej Nerat, Borut Žalik\",\"doi\":\"10.1007/s11042-024-20199-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large binary images are used in many modern applications of image processing. For instance, they serve as inputs or target masks for training machine learning (ML) models in computer vision and image segmentation. Storing large binary images in limited memory and loading them repeatedly on demand, which is common in ML, calls for efficient image encoding and decoding mechanisms. In the paper, we propose an encoding scheme for efficient compressed storage of large binary images based on chain codes, and introduce a new single-pass algorithm for fast parallel reconstruction of raster images from the encoded representation. We use three large real-life binary masks to test the efficiency of the proposed method, which were derived from vector layers of single-class objects – a building cadaster, a woody vegetation landscape feature map, and a road network map. We show that the masks encoded by the proposed method require significantly less storage space than standard lossless compression formats. We further compared the proposed method for mask reconstruction from chain codes with a recent state-of-the-art algorithm, and achieved between <span>\\\\(12\\\\%\\\\)</span> and <span>\\\\(33\\\\%\\\\)</span> faster reconstruction on test data.</p>\",\"PeriodicalId\":18770,\"journal\":{\"name\":\"Multimedia Tools and Applications\",\"volume\":\"168 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimedia Tools and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11042-024-20199-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-20199-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
大型二进制图像被用于现代图像处理的许多应用中。例如,在计算机视觉和图像分割中,它们被用作训练机器学习(ML)模型的输入或目标掩码。将大型二进制图像存储在有限的内存中并按需反复加载(这在 ML 中很常见),需要高效的图像编码和解码机制。在本文中,我们提出了一种基于链码的编码方案,用于高效压缩存储大型二进制图像,并引入了一种新的单程算法,用于从编码表示快速并行重建光栅图像。我们使用三个大型真实二进制掩码来测试所提方法的效率,这三个掩码分别来自单类对象的矢量图层--建筑清册、木本植被景观特征图和道路网络图。我们发现,与标准的无损压缩格式相比,拟议方法编码的掩码所需的存储空间要少得多。我们进一步比较了所提出的从链码中重建掩码的方法和最近的一种最先进的算法,并在测试数据上实现了介于(12%)和(33%)之间的更快的重建速度。
Efficient compressed storage and fast reconstruction of large binary images using chain codes
Large binary images are used in many modern applications of image processing. For instance, they serve as inputs or target masks for training machine learning (ML) models in computer vision and image segmentation. Storing large binary images in limited memory and loading them repeatedly on demand, which is common in ML, calls for efficient image encoding and decoding mechanisms. In the paper, we propose an encoding scheme for efficient compressed storage of large binary images based on chain codes, and introduce a new single-pass algorithm for fast parallel reconstruction of raster images from the encoded representation. We use three large real-life binary masks to test the efficiency of the proposed method, which were derived from vector layers of single-class objects – a building cadaster, a woody vegetation landscape feature map, and a road network map. We show that the masks encoded by the proposed method require significantly less storage space than standard lossless compression formats. We further compared the proposed method for mask reconstruction from chain codes with a recent state-of-the-art algorithm, and achieved between \(12\%\) and \(33\%\) faster reconstruction on test data.
期刊介绍:
Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed.
Specific areas of interest include:
- Multimedia Tools:
- Multimedia Applications:
- Prototype multimedia systems and platforms