{"title":"通过优化深度学习网络的训练超参数来增强肺部疾病的分类能力","authors":"Hardeep Saini, Davinder Singh Saini","doi":"10.1007/s11042-024-20085-2","DOIUrl":null,"url":null,"abstract":"<p>The COVID-19 pandemic was triggered by the SARS-CoV-2 virus which caused multiple ill-health conditions in infected individuals. There were many cases that culminated in death. Chest X-ray images became a proven method for spotting thoracic ailments. The resultant availability of huge public datasets of chest X-ray images has great potential in deep learning for lung ailment detection. This paper presents a classification that aims at acquiring the optimal hyperparameters using the metaheuristic algorithm for various pre-trained CNN training processes. The experimental results show that HSAGWO (Hybrid Simulated Annealing Grey Wolf Optimization) outperforms the other contemporary models for optimizing training hyperparameters in the ResNet50 network. The accuracy, precision, sensitivity (recall), specificity, and F1-score values obtained are 98.78%, 98.10%, 99.31%, and 98.64%, respectively, which are significantly better than the values obtained for the existing methods. The objective of this work is to improve classification accuracy and reduce false negatives while keeping computational time to a minimum.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"106 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing classification of lung diseases by optimizing training hyperparameters of the deep learning network\",\"authors\":\"Hardeep Saini, Davinder Singh Saini\",\"doi\":\"10.1007/s11042-024-20085-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The COVID-19 pandemic was triggered by the SARS-CoV-2 virus which caused multiple ill-health conditions in infected individuals. There were many cases that culminated in death. Chest X-ray images became a proven method for spotting thoracic ailments. The resultant availability of huge public datasets of chest X-ray images has great potential in deep learning for lung ailment detection. This paper presents a classification that aims at acquiring the optimal hyperparameters using the metaheuristic algorithm for various pre-trained CNN training processes. The experimental results show that HSAGWO (Hybrid Simulated Annealing Grey Wolf Optimization) outperforms the other contemporary models for optimizing training hyperparameters in the ResNet50 network. The accuracy, precision, sensitivity (recall), specificity, and F1-score values obtained are 98.78%, 98.10%, 99.31%, and 98.64%, respectively, which are significantly better than the values obtained for the existing methods. The objective of this work is to improve classification accuracy and reduce false negatives while keeping computational time to a minimum.</p>\",\"PeriodicalId\":18770,\"journal\":{\"name\":\"Multimedia Tools and Applications\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimedia Tools and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11042-024-20085-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-20085-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
COVID-19 大流行是由 SARS-CoV-2 病毒引发的,该病毒导致感染者出现多种健康问题。许多病例最终导致死亡。胸部 X 光图像成为发现胸部疾病的行之有效的方法。由此产生的大量胸部 X 光图像公共数据集在肺部疾病检测的深度学习方面具有巨大潜力。本文提出了一种分类方法,旨在利用元启发式算法为各种预训练的 CNN 训练过程获取最佳超参数。实验结果表明,HSAGWO(混合模拟退火灰狼优化)在优化 ResNet50 网络的训练超参数方面优于其他当代模型。获得的准确率、精确度、灵敏度(召回率)、特异性和 F1 分数分别为 98.78%、98.10%、99.31% 和 98.64%,明显优于现有方法获得的值。这项工作的目标是提高分类准确率,减少假阴性,同时将计算时间保持在最低水平。
Enhancing classification of lung diseases by optimizing training hyperparameters of the deep learning network
The COVID-19 pandemic was triggered by the SARS-CoV-2 virus which caused multiple ill-health conditions in infected individuals. There were many cases that culminated in death. Chest X-ray images became a proven method for spotting thoracic ailments. The resultant availability of huge public datasets of chest X-ray images has great potential in deep learning for lung ailment detection. This paper presents a classification that aims at acquiring the optimal hyperparameters using the metaheuristic algorithm for various pre-trained CNN training processes. The experimental results show that HSAGWO (Hybrid Simulated Annealing Grey Wolf Optimization) outperforms the other contemporary models for optimizing training hyperparameters in the ResNet50 network. The accuracy, precision, sensitivity (recall), specificity, and F1-score values obtained are 98.78%, 98.10%, 99.31%, and 98.64%, respectively, which are significantly better than the values obtained for the existing methods. The objective of this work is to improve classification accuracy and reduce false negatives while keeping computational time to a minimum.
期刊介绍:
Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed.
Specific areas of interest include:
- Multimedia Tools:
- Multimedia Applications:
- Prototype multimedia systems and platforms