{"title":"采集和整合声学数据,以便在 PWSN 中对情感数据进行语义组织和分析","authors":"Sushovan Das, Uttam Kr. Mondal","doi":"10.1007/s11042-024-20229-4","DOIUrl":null,"url":null,"abstract":"<p>In an acoustic pervasive wireless sensor network (PWSN), the BASE station plays a vital role in gathering and integrating acoustic sensor data from various nodes, including end and router devices tracking time-driven events. The semantic BASE station is crucial in the IoT landscape as it consolidates data from these networks, enabling thorough sentiment analysis of acoustic signals and yielding insights across domains. A semantic processor at the BASE station is essential for an energy-efficient and intelligent PWSN, managing data collection, integration, signal feature extraction, and publication for model training and sentiment analysis. This paper introduces a novel approach to designing a semantic BASE station, focusing on ontology generation, evaluation, and updates to bolster pervasive wireless sensors in capturing and depicting events and time through an ontological framework. The study addresses challenges in efficiently gathering, integrating, and processing acoustic data from pervasive nodes, proposing a semantic processor at the BASE station to enhance feature extraction and metadata publication. The semantic organization of feature-extracted labeled metadata enables the analysis of comprehensive machine learning (ML) applications such as sentiment analysis, type detection, and environment detection by generating confusion matrix. Evaluation includes performance metrics (NEEN, LSNS, BDAS) as well as accuracy, precision, sensitivity, and specificity for sentimental data analysis to validate the proposed technique’s efficacy.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"15 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic data acquisition and integration for semantic organization of sentimental data and analysis in a PWSN\",\"authors\":\"Sushovan Das, Uttam Kr. Mondal\",\"doi\":\"10.1007/s11042-024-20229-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In an acoustic pervasive wireless sensor network (PWSN), the BASE station plays a vital role in gathering and integrating acoustic sensor data from various nodes, including end and router devices tracking time-driven events. The semantic BASE station is crucial in the IoT landscape as it consolidates data from these networks, enabling thorough sentiment analysis of acoustic signals and yielding insights across domains. A semantic processor at the BASE station is essential for an energy-efficient and intelligent PWSN, managing data collection, integration, signal feature extraction, and publication for model training and sentiment analysis. This paper introduces a novel approach to designing a semantic BASE station, focusing on ontology generation, evaluation, and updates to bolster pervasive wireless sensors in capturing and depicting events and time through an ontological framework. The study addresses challenges in efficiently gathering, integrating, and processing acoustic data from pervasive nodes, proposing a semantic processor at the BASE station to enhance feature extraction and metadata publication. The semantic organization of feature-extracted labeled metadata enables the analysis of comprehensive machine learning (ML) applications such as sentiment analysis, type detection, and environment detection by generating confusion matrix. Evaluation includes performance metrics (NEEN, LSNS, BDAS) as well as accuracy, precision, sensitivity, and specificity for sentimental data analysis to validate the proposed technique’s efficacy.</p>\",\"PeriodicalId\":18770,\"journal\":{\"name\":\"Multimedia Tools and Applications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimedia Tools and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11042-024-20229-4\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-20229-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
在声学普适无线传感器网络(PWSN)中,基站在收集和整合来自不同节点(包括跟踪时间驱动事件的终端和路由器设备)的声学传感器数据方面发挥着至关重要的作用。语义 BASE 站在物联网领域至关重要,因为它能整合来自这些网络的数据,对声学信号进行全面的情感分析,并提供跨领域的见解。BASE 站的语义处理器对于节能、智能的 PWSN 至关重要,它可以管理数据收集、整合、信号特征提取以及用于模型训练和情感分析的发布。本文介绍了一种设计语义 BASE 站的新方法,重点关注本体的生成、评估和更新,通过本体框架支持无处不在的无线传感器捕捉和描述事件和时间。该研究解决了高效收集、整合和处理来自普适性节点的声学数据所面临的挑战,提出了在 BASE 站使用语义处理器来加强特征提取和元数据发布的方法。通过生成混淆矩阵,对特征提取的标注元数据进行语义组织,可对情感分析、类型检测和环境检测等综合机器学习(ML)应用进行分析。评估包括情感数据分析的性能指标(NEEN、LSNS、BDAS)以及准确度、精确度、灵敏度和特异性,以验证所提技术的功效。
Acoustic data acquisition and integration for semantic organization of sentimental data and analysis in a PWSN
In an acoustic pervasive wireless sensor network (PWSN), the BASE station plays a vital role in gathering and integrating acoustic sensor data from various nodes, including end and router devices tracking time-driven events. The semantic BASE station is crucial in the IoT landscape as it consolidates data from these networks, enabling thorough sentiment analysis of acoustic signals and yielding insights across domains. A semantic processor at the BASE station is essential for an energy-efficient and intelligent PWSN, managing data collection, integration, signal feature extraction, and publication for model training and sentiment analysis. This paper introduces a novel approach to designing a semantic BASE station, focusing on ontology generation, evaluation, and updates to bolster pervasive wireless sensors in capturing and depicting events and time through an ontological framework. The study addresses challenges in efficiently gathering, integrating, and processing acoustic data from pervasive nodes, proposing a semantic processor at the BASE station to enhance feature extraction and metadata publication. The semantic organization of feature-extracted labeled metadata enables the analysis of comprehensive machine learning (ML) applications such as sentiment analysis, type detection, and environment detection by generating confusion matrix. Evaluation includes performance metrics (NEEN, LSNS, BDAS) as well as accuracy, precision, sensitivity, and specificity for sentimental data analysis to validate the proposed technique’s efficacy.
期刊介绍:
Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed.
Specific areas of interest include:
- Multimedia Tools:
- Multimedia Applications:
- Prototype multimedia systems and platforms