预测眼动跟踪辅助网页分割

IF 3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Multimedia Tools and Applications Pub Date : 2024-09-09 DOI:10.1007/s11042-024-20202-1
Abdullah Sulayfani, Sukru Eraslan, Yeliz Yesilada
{"title":"预测眼动跟踪辅助网页分割","authors":"Abdullah Sulayfani, Sukru Eraslan, Yeliz Yesilada","doi":"10.1007/s11042-024-20202-1","DOIUrl":null,"url":null,"abstract":"<p>Different kinds of algorithms have been proposed to identify the visual elements of web pages for different purposes, such as improving web accessibility, measuring web page visual quality and aesthetics etc. One group of these algorithms identifies the elements by analyzing the source code and visual representation of web pages, whereas another group discovers the attractive elements by analyzing the eye movements of users. A previous approach proposes combining these two approaches to consider both the source code and visual representation of web pages and users’ eye movements on those pages. The result of the proposed approach can be considered eye-tracking-assisted web page segmentation. However, since the eye-tracking data collection procedure is elaborate, time-consuming, and expensive, and it is not feasible to collect eye-tracking data for each page, we aim to develop a model to predict such segmentation without requiring eye-tracking data. In this paper, we present our experiments with different Machine and Deep Learning algorithms and show that the K-Nearest Neighbour (KNN) model yields the best results in prediction. We present a KNN model that predicts eye-tracking-assisted web page segmentation with an F1-score of 78.74%. This work shows how an Machine Learning algorithm can automate web page segmentation driven by eye-tracking data.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"21 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting eye-tracking assisted web page segmentation\",\"authors\":\"Abdullah Sulayfani, Sukru Eraslan, Yeliz Yesilada\",\"doi\":\"10.1007/s11042-024-20202-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Different kinds of algorithms have been proposed to identify the visual elements of web pages for different purposes, such as improving web accessibility, measuring web page visual quality and aesthetics etc. One group of these algorithms identifies the elements by analyzing the source code and visual representation of web pages, whereas another group discovers the attractive elements by analyzing the eye movements of users. A previous approach proposes combining these two approaches to consider both the source code and visual representation of web pages and users’ eye movements on those pages. The result of the proposed approach can be considered eye-tracking-assisted web page segmentation. However, since the eye-tracking data collection procedure is elaborate, time-consuming, and expensive, and it is not feasible to collect eye-tracking data for each page, we aim to develop a model to predict such segmentation without requiring eye-tracking data. In this paper, we present our experiments with different Machine and Deep Learning algorithms and show that the K-Nearest Neighbour (KNN) model yields the best results in prediction. We present a KNN model that predicts eye-tracking-assisted web page segmentation with an F1-score of 78.74%. This work shows how an Machine Learning algorithm can automate web page segmentation driven by eye-tracking data.</p>\",\"PeriodicalId\":18770,\"journal\":{\"name\":\"Multimedia Tools and Applications\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimedia Tools and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11042-024-20202-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-20202-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

为了提高网页的可访问性、衡量网页的视觉质量和美感等不同目的,人们提出了不同类型的算法来识别网页的视觉元素。其中一类算法通过分析源代码和网页的视觉表现来识别元素,而另一类算法则通过分析用户的眼球运动来发现有吸引力的元素。前一种方法建议将这两种方法结合起来,同时考虑网页的源代码和视觉表现以及用户在这些网页上的眼球运动。该方法的结果可视为眼动跟踪辅助网页分割。然而,由于眼动跟踪数据收集过程繁琐、耗时且昂贵,而且为每个网页收集眼动跟踪数据并不可行,因此我们的目标是开发一种无需眼动跟踪数据即可预测网页分割的模型。在本文中,我们使用不同的机器学习和深度学习算法进行了实验,结果表明 K-Nearest Neighbour (KNN) 模型的预测效果最好。我们提出了一个 KNN 模型,该模型可预测眼动跟踪辅助网页分割,F1 分数高达 78.74%。这项工作展示了机器学习算法如何在眼动跟踪数据的驱动下自动进行网页分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting eye-tracking assisted web page segmentation

Different kinds of algorithms have been proposed to identify the visual elements of web pages for different purposes, such as improving web accessibility, measuring web page visual quality and aesthetics etc. One group of these algorithms identifies the elements by analyzing the source code and visual representation of web pages, whereas another group discovers the attractive elements by analyzing the eye movements of users. A previous approach proposes combining these two approaches to consider both the source code and visual representation of web pages and users’ eye movements on those pages. The result of the proposed approach can be considered eye-tracking-assisted web page segmentation. However, since the eye-tracking data collection procedure is elaborate, time-consuming, and expensive, and it is not feasible to collect eye-tracking data for each page, we aim to develop a model to predict such segmentation without requiring eye-tracking data. In this paper, we present our experiments with different Machine and Deep Learning algorithms and show that the K-Nearest Neighbour (KNN) model yields the best results in prediction. We present a KNN model that predicts eye-tracking-assisted web page segmentation with an F1-score of 78.74%. This work shows how an Machine Learning algorithm can automate web page segmentation driven by eye-tracking data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multimedia Tools and Applications
Multimedia Tools and Applications 工程技术-工程:电子与电气
CiteScore
7.20
自引率
16.70%
发文量
2439
审稿时长
9.2 months
期刊介绍: Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed. Specific areas of interest include: - Multimedia Tools: - Multimedia Applications: - Prototype multimedia systems and platforms
期刊最新文献
MeVs-deep CNN: optimized deep learning model for efficient lung cancer classification Text-driven clothed human image synthesis with 3D human model estimation for assistance in shopping Hybrid golden jackal fusion based recommendation system for spatio-temporal transportation's optimal traffic congestion and road condition classification Deep-Dixon: Deep-Learning frameworks for fusion of MR T1 images for fat and water extraction Unified pre-training with pseudo infrared images for visible-infrared person re-identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1