Baojie Zhang, Ye Zhu, Yang Cao, Sutharshan Rajasegarar, Gang Li, Gang Liu
{"title":"基于内核的 iVAT,具有自适应群组提取功能","authors":"Baojie Zhang, Ye Zhu, Yang Cao, Sutharshan Rajasegarar, Gang Li, Gang Liu","doi":"10.1007/s10115-024-02189-1","DOIUrl":null,"url":null,"abstract":"<p>Visual Assessment of cluster Tendency (VAT) is a popular method that visually represents the possible clusters found in a dataset as dark blocks along the diagonal of a <i>reordered dissimilarity image</i> (RDI). Although many variants of the VAT algorithm have been proposed to improve the visualisation quality on different types of datasets, they still suffer from the challenge of extracting clusters with varied densities. In this paper, we focus on overcoming this drawback of VAT algorithms by incorporating kernel methods and also propose a novel adaptive cluster extraction strategy, named CER, to effectively identify the local clusters from the RDI. We examine their effects on an improved VAT method (iVAT) and systematically evaluate the clustering performance on 18 synthetic and real-world datasets. The experimental results reveal that the recently proposed data-dependent dissimilarity measure, namely the Isolation kernel, helps to significantly improve the RDI image for easy cluster identification. Furthermore, the proposed cluster extraction method, CER, outperforms other existing methods on most of the datasets in terms of a series of dissimilarity measures.\n</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"9 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel-based iVAT with adaptive cluster extraction\",\"authors\":\"Baojie Zhang, Ye Zhu, Yang Cao, Sutharshan Rajasegarar, Gang Li, Gang Liu\",\"doi\":\"10.1007/s10115-024-02189-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Visual Assessment of cluster Tendency (VAT) is a popular method that visually represents the possible clusters found in a dataset as dark blocks along the diagonal of a <i>reordered dissimilarity image</i> (RDI). Although many variants of the VAT algorithm have been proposed to improve the visualisation quality on different types of datasets, they still suffer from the challenge of extracting clusters with varied densities. In this paper, we focus on overcoming this drawback of VAT algorithms by incorporating kernel methods and also propose a novel adaptive cluster extraction strategy, named CER, to effectively identify the local clusters from the RDI. We examine their effects on an improved VAT method (iVAT) and systematically evaluate the clustering performance on 18 synthetic and real-world datasets. The experimental results reveal that the recently proposed data-dependent dissimilarity measure, namely the Isolation kernel, helps to significantly improve the RDI image for easy cluster identification. Furthermore, the proposed cluster extraction method, CER, outperforms other existing methods on most of the datasets in terms of a series of dissimilarity measures.\\n</p>\",\"PeriodicalId\":54749,\"journal\":{\"name\":\"Knowledge and Information Systems\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10115-024-02189-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02189-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Kernel-based iVAT with adaptive cluster extraction
Visual Assessment of cluster Tendency (VAT) is a popular method that visually represents the possible clusters found in a dataset as dark blocks along the diagonal of a reordered dissimilarity image (RDI). Although many variants of the VAT algorithm have been proposed to improve the visualisation quality on different types of datasets, they still suffer from the challenge of extracting clusters with varied densities. In this paper, we focus on overcoming this drawback of VAT algorithms by incorporating kernel methods and also propose a novel adaptive cluster extraction strategy, named CER, to effectively identify the local clusters from the RDI. We examine their effects on an improved VAT method (iVAT) and systematically evaluate the clustering performance on 18 synthetic and real-world datasets. The experimental results reveal that the recently proposed data-dependent dissimilarity measure, namely the Isolation kernel, helps to significantly improve the RDI image for easy cluster identification. Furthermore, the proposed cluster extraction method, CER, outperforms other existing methods on most of the datasets in terms of a series of dissimilarity measures.
期刊介绍:
Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.