利用物理信息神经网络的高级深度学习方法,分析适用于热交换器的径向翅片的热变化

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pramana Pub Date : 2024-08-27 DOI:10.1007/s12043-024-02823-1
K Chandan, R S Varun Kumar, Naman Sharma, K Karthik, K V Nagaraja, Taseer Muhammad, Jasgurpreet Singh Chohan
{"title":"利用物理信息神经网络的高级深度学习方法,分析适用于热交换器的径向翅片的热变化","authors":"K Chandan,&nbsp;R S Varun Kumar,&nbsp;Naman Sharma,&nbsp;K Karthik,&nbsp;K V Nagaraja,&nbsp;Taseer Muhammad,&nbsp;Jasgurpreet Singh Chohan","doi":"10.1007/s12043-024-02823-1","DOIUrl":null,"url":null,"abstract":"<div><p>The radiation impact on the thermal distribution of the radial fin with the temperature-dependent thermal conductivity is discussed in this paper. The basic governing heat equation of the radial fin is formulated with the assistance of the Fourier law of heat conduction. The dimensional heat equation of the radial fin is non-dimensionalised utilising appropriate dimensionless variables and this ordinary differential equation (ODE) is tackled by employing the physics-informed neural network (PINN) scheme. The thermal attributes of the radial fin are investigated for different parameters like convection–conduction parameter, radiation–conduction parameter and thermal conductivity parameter. The outcomes of the systematic assessments of these parameters are demonstrated with the support of graphs. The rise in the thermal conductivity variable promotes thermal variation in the fin. A decrease in radiative–conductive variable scales augments the temperature dispersal through the fin. Furthermore, PINN incorporates physics equations directly into its architecture, unlike standard numerical approaches, which frequently require extensive mathematical expertise for accuracy. This approach enables PINN to give precise findings even when working with minimal training data, saving substantial time and resources.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"98 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced deep learning approach with physics-informed neural networks for analysing the thermal variation through a radial fin applicable in heat exchangers\",\"authors\":\"K Chandan,&nbsp;R S Varun Kumar,&nbsp;Naman Sharma,&nbsp;K Karthik,&nbsp;K V Nagaraja,&nbsp;Taseer Muhammad,&nbsp;Jasgurpreet Singh Chohan\",\"doi\":\"10.1007/s12043-024-02823-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The radiation impact on the thermal distribution of the radial fin with the temperature-dependent thermal conductivity is discussed in this paper. The basic governing heat equation of the radial fin is formulated with the assistance of the Fourier law of heat conduction. The dimensional heat equation of the radial fin is non-dimensionalised utilising appropriate dimensionless variables and this ordinary differential equation (ODE) is tackled by employing the physics-informed neural network (PINN) scheme. The thermal attributes of the radial fin are investigated for different parameters like convection–conduction parameter, radiation–conduction parameter and thermal conductivity parameter. The outcomes of the systematic assessments of these parameters are demonstrated with the support of graphs. The rise in the thermal conductivity variable promotes thermal variation in the fin. A decrease in radiative–conductive variable scales augments the temperature dispersal through the fin. Furthermore, PINN incorporates physics equations directly into its architecture, unlike standard numerical approaches, which frequently require extensive mathematical expertise for accuracy. This approach enables PINN to give precise findings even when working with minimal training data, saving substantial time and resources.</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"98 3\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-024-02823-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02823-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了辐射对热导率随温度变化的径向翅片热分布的影响。在傅立叶热传导定律的帮助下,制定了径向翅片的基本热方程。利用适当的无量纲变量对径向鳍片的量纲热方程进行了无量纲化,并采用物理信息神经网络(PINN)方案来处理这个常微分方程(ODE)。针对对流传导参数、辐射传导参数和热传导参数等不同参数,对径向鳍片的热属性进行了研究。通过图表展示了对这些参数进行系统评估的结果。热导率变量的上升促进了翅片的热变化。辐射导率变量的减小则会增加鳍片的温度分布。此外,PINN 还将物理方程直接纳入其架构中,这与标准数值方法不同,后者通常需要大量数学专业知识才能保证准确性。这种方法使 PINN 即使在使用最少的训练数据时也能得出精确的结果,从而节省了大量的时间和资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advanced deep learning approach with physics-informed neural networks for analysing the thermal variation through a radial fin applicable in heat exchangers

The radiation impact on the thermal distribution of the radial fin with the temperature-dependent thermal conductivity is discussed in this paper. The basic governing heat equation of the radial fin is formulated with the assistance of the Fourier law of heat conduction. The dimensional heat equation of the radial fin is non-dimensionalised utilising appropriate dimensionless variables and this ordinary differential equation (ODE) is tackled by employing the physics-informed neural network (PINN) scheme. The thermal attributes of the radial fin are investigated for different parameters like convection–conduction parameter, radiation–conduction parameter and thermal conductivity parameter. The outcomes of the systematic assessments of these parameters are demonstrated with the support of graphs. The rise in the thermal conductivity variable promotes thermal variation in the fin. A decrease in radiative–conductive variable scales augments the temperature dispersal through the fin. Furthermore, PINN incorporates physics equations directly into its architecture, unlike standard numerical approaches, which frequently require extensive mathematical expertise for accuracy. This approach enables PINN to give precise findings even when working with minimal training data, saving substantial time and resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
期刊最新文献
The effects of q-deformed Rosen–Morse potential on the behaviour of interacting BEC systems The improved saturation model in the nuclei Stefan blowing impact and chemical response of Rivlin–Reiner fluid through rotating convective disk Impact of gold and silver nanoparticles on the thermally radiating MHD slip blood flow within the stenotic artery using stability analysis and entropy optimisation Study of the bubble motion inside a peristaltic tube
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1