Zhaomeng Liu, Shangzhuo Li, Jianjia Mu, Lu-Kang Zhao, Xuan-Wen Gao, Qinfen Gu, Xuan-Chen Wang, Hong Chen, Wen-Bin Luo
{"title":"元素定制淬火方法:用于钾离子电池的相缺陷 K0.5Mn1-xCrxO2 阴极材料","authors":"Zhaomeng Liu, Shangzhuo Li, Jianjia Mu, Lu-Kang Zhao, Xuan-Wen Gao, Qinfen Gu, Xuan-Chen Wang, Hong Chen, Wen-Bin Luo","doi":"10.1016/j.mtchem.2024.102251","DOIUrl":null,"url":null,"abstract":"Potassium-ion batteries (PIBs) are emerging as a promising next-generation energy storage system due to their high economic efficiency and theoretical energy density. Among various cathode materials, KMnO-based cathode materials have garnered significant attention due to their high energy density and industrial feasibility. In this work, A P3-type KMnCrO cathode material was synthesized using a target-elements tailoring quenching method. By strategically substituting targeted elements and employing tailored quenching techniques, it can effectively alleviate Jahn-Teller distortion and suppress phase transitions, enhancing the material structural stability. The synthesized KMnCrO cathode material demonstrated excellent cycling stability of retaining 70 % specific capacity after 300 cycles at a current density of 500 mA g. This work breaks out the traditional solid-phase sintering preparation method and provides a new solution for the future preparation of other structurally stable high-performance layered oxides with excellent rate performance for potassium ion batteries.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"10 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Element-tailored quenching methods: Phase-defective K0.5Mn1-xCrxO2 cathode materials for potassium ion batteries\",\"authors\":\"Zhaomeng Liu, Shangzhuo Li, Jianjia Mu, Lu-Kang Zhao, Xuan-Wen Gao, Qinfen Gu, Xuan-Chen Wang, Hong Chen, Wen-Bin Luo\",\"doi\":\"10.1016/j.mtchem.2024.102251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Potassium-ion batteries (PIBs) are emerging as a promising next-generation energy storage system due to their high economic efficiency and theoretical energy density. Among various cathode materials, KMnO-based cathode materials have garnered significant attention due to their high energy density and industrial feasibility. In this work, A P3-type KMnCrO cathode material was synthesized using a target-elements tailoring quenching method. By strategically substituting targeted elements and employing tailored quenching techniques, it can effectively alleviate Jahn-Teller distortion and suppress phase transitions, enhancing the material structural stability. The synthesized KMnCrO cathode material demonstrated excellent cycling stability of retaining 70 % specific capacity after 300 cycles at a current density of 500 mA g. This work breaks out the traditional solid-phase sintering preparation method and provides a new solution for the future preparation of other structurally stable high-performance layered oxides with excellent rate performance for potassium ion batteries.\",\"PeriodicalId\":18353,\"journal\":{\"name\":\"Materials Today Chemistry\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtchem.2024.102251\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102251","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Element-tailored quenching methods: Phase-defective K0.5Mn1-xCrxO2 cathode materials for potassium ion batteries
Potassium-ion batteries (PIBs) are emerging as a promising next-generation energy storage system due to their high economic efficiency and theoretical energy density. Among various cathode materials, KMnO-based cathode materials have garnered significant attention due to their high energy density and industrial feasibility. In this work, A P3-type KMnCrO cathode material was synthesized using a target-elements tailoring quenching method. By strategically substituting targeted elements and employing tailored quenching techniques, it can effectively alleviate Jahn-Teller distortion and suppress phase transitions, enhancing the material structural stability. The synthesized KMnCrO cathode material demonstrated excellent cycling stability of retaining 70 % specific capacity after 300 cycles at a current density of 500 mA g. This work breaks out the traditional solid-phase sintering preparation method and provides a new solution for the future preparation of other structurally stable high-performance layered oxides with excellent rate performance for potassium ion batteries.
期刊介绍:
Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry.
This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.