{"title":"从高级合成到组织工程的支架结构","authors":"Maitri Chakraborty, Arikketh Devi","doi":"10.1016/j.mtchem.2024.102258","DOIUrl":null,"url":null,"abstract":"Tissue damage or the loss of tissue in certain traumatic situations or unexpected events can severely impact the body's overall health and well-being. Synthetic and natural materials have a wide range of applications in the biomedical field, including bioactuators, biosensors, neural implants, drug delivery systems, and tissue engineering scaffolds. This review focuses specifically on these materials for tissue engineering applications. Tissue engineering scaffolds act as an extracellular matrix that interacts with cells before forming new tissue. The chemical and structural characteristics of scaffolds are crucial in creating an ideal three-dimensional structure for tissue engineering applications. Scaffolds used for tissue engineering should possess proper architecture and mechanical properties, as well as support cell adhesion, proliferation, and differentiation. A significant amount of research has been conducted on the topic of various scaffold properties, such as surface topographic features (roughness and hydrophilicity) and scaffold microstructures (pore size, porosity, pore interconnectivity, and pore and fiber architectures) that influence cell-scaffold interactions. This review also highlights on the techniques used to create scaffolds with the required property of biocompatibility with tissues, as well as its desired properties and applications where scaffolds are currently being used in modern times.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":"3 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landscape of scaffolds from advanced synthesis to tissue engineering\",\"authors\":\"Maitri Chakraborty, Arikketh Devi\",\"doi\":\"10.1016/j.mtchem.2024.102258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tissue damage or the loss of tissue in certain traumatic situations or unexpected events can severely impact the body's overall health and well-being. Synthetic and natural materials have a wide range of applications in the biomedical field, including bioactuators, biosensors, neural implants, drug delivery systems, and tissue engineering scaffolds. This review focuses specifically on these materials for tissue engineering applications. Tissue engineering scaffolds act as an extracellular matrix that interacts with cells before forming new tissue. The chemical and structural characteristics of scaffolds are crucial in creating an ideal three-dimensional structure for tissue engineering applications. Scaffolds used for tissue engineering should possess proper architecture and mechanical properties, as well as support cell adhesion, proliferation, and differentiation. A significant amount of research has been conducted on the topic of various scaffold properties, such as surface topographic features (roughness and hydrophilicity) and scaffold microstructures (pore size, porosity, pore interconnectivity, and pore and fiber architectures) that influence cell-scaffold interactions. This review also highlights on the techniques used to create scaffolds with the required property of biocompatibility with tissues, as well as its desired properties and applications where scaffolds are currently being used in modern times.\",\"PeriodicalId\":18353,\"journal\":{\"name\":\"Materials Today Chemistry\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtchem.2024.102258\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102258","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Landscape of scaffolds from advanced synthesis to tissue engineering
Tissue damage or the loss of tissue in certain traumatic situations or unexpected events can severely impact the body's overall health and well-being. Synthetic and natural materials have a wide range of applications in the biomedical field, including bioactuators, biosensors, neural implants, drug delivery systems, and tissue engineering scaffolds. This review focuses specifically on these materials for tissue engineering applications. Tissue engineering scaffolds act as an extracellular matrix that interacts with cells before forming new tissue. The chemical and structural characteristics of scaffolds are crucial in creating an ideal three-dimensional structure for tissue engineering applications. Scaffolds used for tissue engineering should possess proper architecture and mechanical properties, as well as support cell adhesion, proliferation, and differentiation. A significant amount of research has been conducted on the topic of various scaffold properties, such as surface topographic features (roughness and hydrophilicity) and scaffold microstructures (pore size, porosity, pore interconnectivity, and pore and fiber architectures) that influence cell-scaffold interactions. This review also highlights on the techniques used to create scaffolds with the required property of biocompatibility with tissues, as well as its desired properties and applications where scaffolds are currently being used in modern times.
期刊介绍:
Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry.
This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.