Cindy N. Luu, Xinting Yu, Christopher R. Glein, Hamish Innes, Artyom Aguichine, Joshua Krissansen-Totton, Julianne I. Moses, Shang-Min Tsai, Xi Zhang, Ngoc Truong, Jonathan J. Fortney
{"title":"作为热液世界的富挥发性次海王星:K2-18 b的案例","authors":"Cindy N. Luu, Xinting Yu, Christopher R. Glein, Hamish Innes, Artyom Aguichine, Joshua Krissansen-Totton, Julianne I. Moses, Shang-Min Tsai, Xi Zhang, Ngoc Truong, Jonathan J. Fortney","doi":"arxiv-2409.06258","DOIUrl":null,"url":null,"abstract":"Temperate exoplanets between the sizes of Earth and Neptune, known as\n\"sub-Neptunes\", have emerged as intriguing targets for astrobiology. It is\nunknown whether these planets resemble Earth-like terrestrial worlds with a\nhabitable surface, Neptune-like giant planets with deep atmospheres and no\nhabitable surface, or something exotic in between. Recent JWST transmission\nspectroscopy observations of the canonical sub-Neptune K2-18 b revealed ~1%\nCH4, ~1% CO2, and a non-detection of CO in the atmosphere. While previous\nstudies have proposed that the observed atmospheric composition could help\nconstrain the lower atmosphere conditions and determine the interior structure\nof sub-Neptunes like K2-18 b, the possible interactions between the atmosphere\nand a hot, supercritical water ocean at its base remain unexplored. In this\nwork, we investigate whether a global supercritical water ocean, resembling a\nplanetary-scale hydrothermal system, can explain these observations on K2-18\nb-like sub-Neptunes through equilibrium aqueous geochemical calculations. We\nfind that the observed atmospheric CH4/CO2 ratio implies a minimum ocean\ntemperature of ~715 K, whereas the corresponding CO/CO2 ratio allows ocean\ntemperatures up to ~1060 K. These results indicate that a global supercritical\nwater ocean on K2-18 b is plausible. While life cannot survive in this ocean,\nthis work represents the first step towards understanding how a global\nsupercritical water ocean may influence observable atmospheric characteristics\non volatile-rich sub-Neptunes. Future observations with better constrained NH3\nand CO mixing ratios could further help distinguish between possible interior\ncompositions of K2-18 b.","PeriodicalId":501209,"journal":{"name":"arXiv - PHYS - Earth and Planetary Astrophysics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volatile-rich Sub-Neptunes as Hydrothermal Worlds: The Case of K2-18 b\",\"authors\":\"Cindy N. Luu, Xinting Yu, Christopher R. Glein, Hamish Innes, Artyom Aguichine, Joshua Krissansen-Totton, Julianne I. Moses, Shang-Min Tsai, Xi Zhang, Ngoc Truong, Jonathan J. Fortney\",\"doi\":\"arxiv-2409.06258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temperate exoplanets between the sizes of Earth and Neptune, known as\\n\\\"sub-Neptunes\\\", have emerged as intriguing targets for astrobiology. It is\\nunknown whether these planets resemble Earth-like terrestrial worlds with a\\nhabitable surface, Neptune-like giant planets with deep atmospheres and no\\nhabitable surface, or something exotic in between. Recent JWST transmission\\nspectroscopy observations of the canonical sub-Neptune K2-18 b revealed ~1%\\nCH4, ~1% CO2, and a non-detection of CO in the atmosphere. While previous\\nstudies have proposed that the observed atmospheric composition could help\\nconstrain the lower atmosphere conditions and determine the interior structure\\nof sub-Neptunes like K2-18 b, the possible interactions between the atmosphere\\nand a hot, supercritical water ocean at its base remain unexplored. In this\\nwork, we investigate whether a global supercritical water ocean, resembling a\\nplanetary-scale hydrothermal system, can explain these observations on K2-18\\nb-like sub-Neptunes through equilibrium aqueous geochemical calculations. We\\nfind that the observed atmospheric CH4/CO2 ratio implies a minimum ocean\\ntemperature of ~715 K, whereas the corresponding CO/CO2 ratio allows ocean\\ntemperatures up to ~1060 K. These results indicate that a global supercritical\\nwater ocean on K2-18 b is plausible. While life cannot survive in this ocean,\\nthis work represents the first step towards understanding how a global\\nsupercritical water ocean may influence observable atmospheric characteristics\\non volatile-rich sub-Neptunes. Future observations with better constrained NH3\\nand CO mixing ratios could further help distinguish between possible interior\\ncompositions of K2-18 b.\",\"PeriodicalId\":501209,\"journal\":{\"name\":\"arXiv - PHYS - Earth and Planetary Astrophysics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Earth and Planetary Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
大小介于地球和海王星之间的温带系外行星,被称为 "亚海王星",已经成为天体生物学的有趣目标。目前尚不清楚这些行星是类似于具有可居住表面的类地行星,还是类似于具有深层大气但没有可居住表面的海王星巨行星,抑或是介于两者之间的奇特行星。JWST 最近对典型的亚海王星 K2-18 b 进行的透射光谱观测显示,其大气中约有 1%的 CH4、约有 1%的 CO2,没有检测到 CO。尽管之前的研究提出,观测到的大气成分有助于约束低层大气条件,并确定像K2-18 b这样的亚海王星的内部结构,但大气层与其底部的热超临界水海洋之间可能存在的相互作用仍未得到探索。在这项工作中,我们通过平衡水地球化学计算,研究了类似行星尺度热液系统的全球超临界水海洋能否解释在 K2-18b 类海王星上的这些观测结果。我们发现,观测到的大气中 CH4/CO2 比率意味着最低海洋温度约为 715 K,而相应的 CO/CO2 比率允许海洋温度高达约 1060 K。虽然生命无法在这一海洋中生存,但这项工作代表着向了解全球超临界水海洋如何影响富含挥发性物质的次海王星上的可观测大气特征迈出的第一步。未来的观测如果能更好地约束 NH3 和 CO 的混合比,将有助于进一步区分 K2-18 b 可能的内部组成。
Volatile-rich Sub-Neptunes as Hydrothermal Worlds: The Case of K2-18 b
Temperate exoplanets between the sizes of Earth and Neptune, known as
"sub-Neptunes", have emerged as intriguing targets for astrobiology. It is
unknown whether these planets resemble Earth-like terrestrial worlds with a
habitable surface, Neptune-like giant planets with deep atmospheres and no
habitable surface, or something exotic in between. Recent JWST transmission
spectroscopy observations of the canonical sub-Neptune K2-18 b revealed ~1%
CH4, ~1% CO2, and a non-detection of CO in the atmosphere. While previous
studies have proposed that the observed atmospheric composition could help
constrain the lower atmosphere conditions and determine the interior structure
of sub-Neptunes like K2-18 b, the possible interactions between the atmosphere
and a hot, supercritical water ocean at its base remain unexplored. In this
work, we investigate whether a global supercritical water ocean, resembling a
planetary-scale hydrothermal system, can explain these observations on K2-18
b-like sub-Neptunes through equilibrium aqueous geochemical calculations. We
find that the observed atmospheric CH4/CO2 ratio implies a minimum ocean
temperature of ~715 K, whereas the corresponding CO/CO2 ratio allows ocean
temperatures up to ~1060 K. These results indicate that a global supercritical
water ocean on K2-18 b is plausible. While life cannot survive in this ocean,
this work represents the first step towards understanding how a global
supercritical water ocean may influence observable atmospheric characteristics
on volatile-rich sub-Neptunes. Future observations with better constrained NH3
and CO mixing ratios could further help distinguish between possible interior
compositions of K2-18 b.