{"title":"pFind:在车辆群感应中寻找丢失物体时保护隐私","authors":"Yinggang Sun, Haining Yu, Xiang Li, Yizheng Yang, Xiangzhan Yu","doi":"10.1007/s11280-024-01300-4","DOIUrl":null,"url":null,"abstract":"<p>Web 3.0 makes crowdsensing services more popular, because of its decentralisation and interoperability. Lost Object Finding (LOF) in vehicular crowdsensing is an emerging paradigm in which vehicles act as detectors to find lost objects for their owners. To enjoy LOF services, object owners need to submit the tag ID of his lost object, and then detectors need to update their detecting results together with their locations. But the identity and location information are usually sensitive, which can be used to infer the locations of lost objects, or track participant detectors. This raises serious privacy concerns. In this paper, we study the privacy leakages associated with object finding, and propose a privacy-preserving scheme, named pFind, for locating lost objects. This scheme allows owners to retrieve the locations of their lost objects and provides strong privacy protection for the object owners, lost objects, and detectors. In pFind, we design an oblivious object detection protocol by using RBS cryptosystem, which simultaneously provides confidentiality, authentication and integrity for lost objects detection. Meanwhile, we propose a private location retrieval protocol to compute the approximate location of a lost object over encrypted data. We further propose two optimizations for pFind to enhance functionality and performance. Theoretical analysis and experimental evaluations show that pFind is secure, accurate and efficient.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pFind: Privacy-preserving lost object finding in vehicular crowdsensing\",\"authors\":\"Yinggang Sun, Haining Yu, Xiang Li, Yizheng Yang, Xiangzhan Yu\",\"doi\":\"10.1007/s11280-024-01300-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Web 3.0 makes crowdsensing services more popular, because of its decentralisation and interoperability. Lost Object Finding (LOF) in vehicular crowdsensing is an emerging paradigm in which vehicles act as detectors to find lost objects for their owners. To enjoy LOF services, object owners need to submit the tag ID of his lost object, and then detectors need to update their detecting results together with their locations. But the identity and location information are usually sensitive, which can be used to infer the locations of lost objects, or track participant detectors. This raises serious privacy concerns. In this paper, we study the privacy leakages associated with object finding, and propose a privacy-preserving scheme, named pFind, for locating lost objects. This scheme allows owners to retrieve the locations of their lost objects and provides strong privacy protection for the object owners, lost objects, and detectors. In pFind, we design an oblivious object detection protocol by using RBS cryptosystem, which simultaneously provides confidentiality, authentication and integrity for lost objects detection. Meanwhile, we propose a private location retrieval protocol to compute the approximate location of a lost object over encrypted data. We further propose two optimizations for pFind to enhance functionality and performance. Theoretical analysis and experimental evaluations show that pFind is secure, accurate and efficient.</p>\",\"PeriodicalId\":501180,\"journal\":{\"name\":\"World Wide Web\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11280-024-01300-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-024-01300-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
pFind: Privacy-preserving lost object finding in vehicular crowdsensing
Web 3.0 makes crowdsensing services more popular, because of its decentralisation and interoperability. Lost Object Finding (LOF) in vehicular crowdsensing is an emerging paradigm in which vehicles act as detectors to find lost objects for their owners. To enjoy LOF services, object owners need to submit the tag ID of his lost object, and then detectors need to update their detecting results together with their locations. But the identity and location information are usually sensitive, which can be used to infer the locations of lost objects, or track participant detectors. This raises serious privacy concerns. In this paper, we study the privacy leakages associated with object finding, and propose a privacy-preserving scheme, named pFind, for locating lost objects. This scheme allows owners to retrieve the locations of their lost objects and provides strong privacy protection for the object owners, lost objects, and detectors. In pFind, we design an oblivious object detection protocol by using RBS cryptosystem, which simultaneously provides confidentiality, authentication and integrity for lost objects detection. Meanwhile, we propose a private location retrieval protocol to compute the approximate location of a lost object over encrypted data. We further propose two optimizations for pFind to enhance functionality and performance. Theoretical analysis and experimental evaluations show that pFind is secure, accurate and efficient.