{"title":"整合深度学习和元搜索算法,在检测恶意物联网节点中实现基于区块链的放心数据管理","authors":"Faeiz M. Alserhani","doi":"10.1007/s12083-024-01786-9","DOIUrl":null,"url":null,"abstract":"<p>The Internet of Things (IoT) refers to a network where different smart devices are interconnected through the Internet. This network enables these devices to communicate, share data, and exert control over the surrounding physical environment to work as a data-driven mobile computing system. Nevertheless, due to wireless networks' openness, connectivity, resource constraints, and smart devices' resource limitations, the IoT is vulnerable to several different routing attacks. Addressing these security concerns becomes crucial if data exchanged over IoT networks is to remain precise and trustworthy. This study presents a trust management evaluation for IoT devices with routing using the cryptographic algorithms Rivest, Shamir, Adleman (RSA), Self-Adaptive Tasmanian Devil Optimization (SA_TDO) for optimal key generation, and Secure Hash Algorithm 3-512 (SHA3-512), as well as an Intrusion Detection System (IDS) for spotting threats in IoT routing. By verifying the validity and integrity of the data exchanged between nodes and identifying and thwarting network threats, the proposed approach seeks to enhance IoT network security. The stored data is encrypted using the RSA technique, keys are optimally generated using the Tasmanian Devil Optimization (TDO) process, and data integrity is guaranteed using the SHA3-512 algorithm. Deep Learning Intrusion detection is achieved with Convolutional Spiking neural network-optimized deep neural network. The Deep Neural Network (DNN) is optimized with the Archimedes Optimization Algorithm (AOA). The developed model is simulated in Python, and the results obtained are evaluated and compared with other existing models. The findings indicate that the design is efficient in providing secure and reliable routing in IoT-enabled, futuristic, smart vertical networks while identifying and blocking threats. The proposed technique also showcases shorter response times (209.397 s at 70% learn rate, 223.103 s at 80% learn rate) and shorter sharing record times (13.0873 s at 70% learn rate, 13.9439 s at 80% learn rate), which underlines its strength. The performance metrics for the proposed AOA-ODNN model were evaluated at learning rates of 70% and 80%. The highest metrics were achieved at an 80% learning rate, with an accuracy of 0.989434, precision of 0.988886, sensitivity of 0.988886, specificity of 0.998616, F-measure of 0.988886, Matthews Correlation Coefficient (MCC) of 0.895521, Negative predictive value (NPV) of 0.998616, False Positive Rate (FPR) of 0.034365, and False Negative Rate (FNR) of 0.103095.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"13 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating deep learning and metaheuristics algorithms for blockchain-based reassurance data management in the detection of malicious IoT nodes\",\"authors\":\"Faeiz M. Alserhani\",\"doi\":\"10.1007/s12083-024-01786-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Internet of Things (IoT) refers to a network where different smart devices are interconnected through the Internet. This network enables these devices to communicate, share data, and exert control over the surrounding physical environment to work as a data-driven mobile computing system. Nevertheless, due to wireless networks' openness, connectivity, resource constraints, and smart devices' resource limitations, the IoT is vulnerable to several different routing attacks. Addressing these security concerns becomes crucial if data exchanged over IoT networks is to remain precise and trustworthy. This study presents a trust management evaluation for IoT devices with routing using the cryptographic algorithms Rivest, Shamir, Adleman (RSA), Self-Adaptive Tasmanian Devil Optimization (SA_TDO) for optimal key generation, and Secure Hash Algorithm 3-512 (SHA3-512), as well as an Intrusion Detection System (IDS) for spotting threats in IoT routing. By verifying the validity and integrity of the data exchanged between nodes and identifying and thwarting network threats, the proposed approach seeks to enhance IoT network security. The stored data is encrypted using the RSA technique, keys are optimally generated using the Tasmanian Devil Optimization (TDO) process, and data integrity is guaranteed using the SHA3-512 algorithm. Deep Learning Intrusion detection is achieved with Convolutional Spiking neural network-optimized deep neural network. The Deep Neural Network (DNN) is optimized with the Archimedes Optimization Algorithm (AOA). The developed model is simulated in Python, and the results obtained are evaluated and compared with other existing models. The findings indicate that the design is efficient in providing secure and reliable routing in IoT-enabled, futuristic, smart vertical networks while identifying and blocking threats. The proposed technique also showcases shorter response times (209.397 s at 70% learn rate, 223.103 s at 80% learn rate) and shorter sharing record times (13.0873 s at 70% learn rate, 13.9439 s at 80% learn rate), which underlines its strength. The performance metrics for the proposed AOA-ODNN model were evaluated at learning rates of 70% and 80%. The highest metrics were achieved at an 80% learning rate, with an accuracy of 0.989434, precision of 0.988886, sensitivity of 0.988886, specificity of 0.998616, F-measure of 0.988886, Matthews Correlation Coefficient (MCC) of 0.895521, Negative predictive value (NPV) of 0.998616, False Positive Rate (FPR) of 0.034365, and False Negative Rate (FNR) of 0.103095.</p>\",\"PeriodicalId\":49313,\"journal\":{\"name\":\"Peer-To-Peer Networking and Applications\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer-To-Peer Networking and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12083-024-01786-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01786-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Integrating deep learning and metaheuristics algorithms for blockchain-based reassurance data management in the detection of malicious IoT nodes
The Internet of Things (IoT) refers to a network where different smart devices are interconnected through the Internet. This network enables these devices to communicate, share data, and exert control over the surrounding physical environment to work as a data-driven mobile computing system. Nevertheless, due to wireless networks' openness, connectivity, resource constraints, and smart devices' resource limitations, the IoT is vulnerable to several different routing attacks. Addressing these security concerns becomes crucial if data exchanged over IoT networks is to remain precise and trustworthy. This study presents a trust management evaluation for IoT devices with routing using the cryptographic algorithms Rivest, Shamir, Adleman (RSA), Self-Adaptive Tasmanian Devil Optimization (SA_TDO) for optimal key generation, and Secure Hash Algorithm 3-512 (SHA3-512), as well as an Intrusion Detection System (IDS) for spotting threats in IoT routing. By verifying the validity and integrity of the data exchanged between nodes and identifying and thwarting network threats, the proposed approach seeks to enhance IoT network security. The stored data is encrypted using the RSA technique, keys are optimally generated using the Tasmanian Devil Optimization (TDO) process, and data integrity is guaranteed using the SHA3-512 algorithm. Deep Learning Intrusion detection is achieved with Convolutional Spiking neural network-optimized deep neural network. The Deep Neural Network (DNN) is optimized with the Archimedes Optimization Algorithm (AOA). The developed model is simulated in Python, and the results obtained are evaluated and compared with other existing models. The findings indicate that the design is efficient in providing secure and reliable routing in IoT-enabled, futuristic, smart vertical networks while identifying and blocking threats. The proposed technique also showcases shorter response times (209.397 s at 70% learn rate, 223.103 s at 80% learn rate) and shorter sharing record times (13.0873 s at 70% learn rate, 13.9439 s at 80% learn rate), which underlines its strength. The performance metrics for the proposed AOA-ODNN model were evaluated at learning rates of 70% and 80%. The highest metrics were achieved at an 80% learning rate, with an accuracy of 0.989434, precision of 0.988886, sensitivity of 0.988886, specificity of 0.998616, F-measure of 0.988886, Matthews Correlation Coefficient (MCC) of 0.895521, Negative predictive value (NPV) of 0.998616, False Positive Rate (FPR) of 0.034365, and False Negative Rate (FNR) of 0.103095.
期刊介绍:
The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security.
The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain.
Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.