{"title":"DWAMA:用于减轻联合学习中中毒攻击的动态权重调整马哈拉诺比斯防御算法","authors":"Guozhi Zhang, Hongsen Liu, Bin Yang, Shuyan Feng","doi":"10.1007/s12083-024-01794-9","DOIUrl":null,"url":null,"abstract":"<p>Federated learning is a distributed machine learning approach that enables participants to train models without sharing raw data, thereby protecting data privacy and facilitating collective information extraction. However, the risk of malicious attacks during client communication in federated learning remains a concern. Model poisoning attacks, where attackers hijack and modify uploaded models, can severely degrade the accuracy of the global model. To address this issue, we propose DWAMA, a federated learning-based method that incorporates outlier detection and a robust aggregation strategy. We use the robust Mahalanobis distance as a metric to measure abnormality, capturing complex correlations between data features. We also dynamically adjust the aggregation weights of malicious clients to ensure a more stable model updating process. Moreover, we adaptively adjust the malicious detection threshold to adapt to the Non-IID scenarios. Through a series of experiments and comparisons, we verify our method’s effectiveness and performance advantages, offering a more robust defense against model poisoning attacks in federated learning scenarios.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"21 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DWAMA: Dynamic weight-adjusted mahalanobis defense algorithm for mitigating poisoning attacks in federated learning\",\"authors\":\"Guozhi Zhang, Hongsen Liu, Bin Yang, Shuyan Feng\",\"doi\":\"10.1007/s12083-024-01794-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Federated learning is a distributed machine learning approach that enables participants to train models without sharing raw data, thereby protecting data privacy and facilitating collective information extraction. However, the risk of malicious attacks during client communication in federated learning remains a concern. Model poisoning attacks, where attackers hijack and modify uploaded models, can severely degrade the accuracy of the global model. To address this issue, we propose DWAMA, a federated learning-based method that incorporates outlier detection and a robust aggregation strategy. We use the robust Mahalanobis distance as a metric to measure abnormality, capturing complex correlations between data features. We also dynamically adjust the aggregation weights of malicious clients to ensure a more stable model updating process. Moreover, we adaptively adjust the malicious detection threshold to adapt to the Non-IID scenarios. Through a series of experiments and comparisons, we verify our method’s effectiveness and performance advantages, offering a more robust defense against model poisoning attacks in federated learning scenarios.</p>\",\"PeriodicalId\":49313,\"journal\":{\"name\":\"Peer-To-Peer Networking and Applications\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer-To-Peer Networking and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12083-024-01794-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01794-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
DWAMA: Dynamic weight-adjusted mahalanobis defense algorithm for mitigating poisoning attacks in federated learning
Federated learning is a distributed machine learning approach that enables participants to train models without sharing raw data, thereby protecting data privacy and facilitating collective information extraction. However, the risk of malicious attacks during client communication in federated learning remains a concern. Model poisoning attacks, where attackers hijack and modify uploaded models, can severely degrade the accuracy of the global model. To address this issue, we propose DWAMA, a federated learning-based method that incorporates outlier detection and a robust aggregation strategy. We use the robust Mahalanobis distance as a metric to measure abnormality, capturing complex correlations between data features. We also dynamically adjust the aggregation weights of malicious clients to ensure a more stable model updating process. Moreover, we adaptively adjust the malicious detection threshold to adapt to the Non-IID scenarios. Through a series of experiments and comparisons, we verify our method’s effectiveness and performance advantages, offering a more robust defense against model poisoning attacks in federated learning scenarios.
期刊介绍:
The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security.
The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain.
Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.