IoV 区块安全:基于区块链的车联网网络安全数据收集和验证框架

IF 3.3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Peer-To-Peer Networking and Applications Pub Date : 2024-09-09 DOI:10.1007/s12083-024-01802-y
Madhukar G, Chandrashekar Jatoth, Rajesh Doriya
{"title":"IoV 区块安全:基于区块链的车联网网络安全数据收集和验证框架","authors":"Madhukar G, Chandrashekar Jatoth, Rajesh Doriya","doi":"10.1007/s12083-024-01802-y","DOIUrl":null,"url":null,"abstract":"<p>In the expanding field of the Internet of Vehicles (IoV) where network communication meets technology there is a pressing need, for robust data management and security. This study introduces IoVBlockSecure a protocol based on technology that aims to ensure collection and validation of data within the dynamic and decentralized realm of vehicle networks. The primary objective of IoVBlockSecure is to enhance data security, integrity, efficiency, and scalability in IoV. It achieves this through the utilization of smart contracts advanced blockchain technology and consensus protocol. The framework tackles scalability challenges by integrating both off chain and on chain data storage solutions thereby boosting the security and reliability of data from roadside units (RSUs) and vehicles. Additionally IoVBlockSecure incorporates techniques, a unique consensus mechanism, and a sequential numbering system for data points to optimize data processing and validation. Furthermore, the framework demonstrates its adaptability and operational efficiency by implementing Layer 2 solutions for off chain activities. Comprehensive performance evaluations were conducted to assess aspects such as fault tolerance, data integrity, security measures effectiveness, transaction latency, system throughput, consensus efficacy, and block processing time, across node counts and operational loads. The evaluations conducted confirm that the model is robust and effective demonstrating capabilities, in processing blocks and achieving consensus when transaction latencies increase and system throughputs vary. The framework shows resilience and reliability achieving levels of data integrity, security, and fault tolerance. While these findings validate the potential of IoVBlockSecure in meeting the demands of IoV networks they also highlight areas for improvement in optimizing throughput and latency for optimal performance.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"2 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IoV block secure: blockchain based secure data collection and validation framework for internet of vehicles network\",\"authors\":\"Madhukar G, Chandrashekar Jatoth, Rajesh Doriya\",\"doi\":\"10.1007/s12083-024-01802-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the expanding field of the Internet of Vehicles (IoV) where network communication meets technology there is a pressing need, for robust data management and security. This study introduces IoVBlockSecure a protocol based on technology that aims to ensure collection and validation of data within the dynamic and decentralized realm of vehicle networks. The primary objective of IoVBlockSecure is to enhance data security, integrity, efficiency, and scalability in IoV. It achieves this through the utilization of smart contracts advanced blockchain technology and consensus protocol. The framework tackles scalability challenges by integrating both off chain and on chain data storage solutions thereby boosting the security and reliability of data from roadside units (RSUs) and vehicles. Additionally IoVBlockSecure incorporates techniques, a unique consensus mechanism, and a sequential numbering system for data points to optimize data processing and validation. Furthermore, the framework demonstrates its adaptability and operational efficiency by implementing Layer 2 solutions for off chain activities. Comprehensive performance evaluations were conducted to assess aspects such as fault tolerance, data integrity, security measures effectiveness, transaction latency, system throughput, consensus efficacy, and block processing time, across node counts and operational loads. The evaluations conducted confirm that the model is robust and effective demonstrating capabilities, in processing blocks and achieving consensus when transaction latencies increase and system throughputs vary. The framework shows resilience and reliability achieving levels of data integrity, security, and fault tolerance. While these findings validate the potential of IoVBlockSecure in meeting the demands of IoV networks they also highlight areas for improvement in optimizing throughput and latency for optimal performance.</p>\",\"PeriodicalId\":49313,\"journal\":{\"name\":\"Peer-To-Peer Networking and Applications\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peer-To-Peer Networking and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12083-024-01802-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01802-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在不断扩展的车联网(IoV)领域,网络通信与技术相结合,迫切需要强大的数据管理和安全性。本研究介绍的 IoVBlockSecure 是一种基于技术的协议,旨在确保在动态和分散的车辆网络领域收集和验证数据。IoVBlockSecure 的主要目标是提高 IoV 中数据的安全性、完整性、效率和可扩展性。它通过利用智能合约先进的区块链技术和共识协议来实现这一目标。该框架通过整合链外和链上数据存储解决方案来应对可扩展性挑战,从而提高路边装置(RSU)和车辆数据的安全性和可靠性。此外,IoVBlockSecure 还采用了各种技术、独特的共识机制和数据点顺序编号系统,以优化数据处理和验证。此外,该框架还通过实施针对链外活动的第 2 层解决方案,展示了其适应性和运行效率。我们进行了全面的性能评估,以评估不同节点数量和运行负载下的容错性、数据完整性、安全措施有效性、交易延迟、系统吞吐量、共识效率和区块处理时间等方面。评估结果证实,该模型在交易延迟增加和系统吞吐量变化的情况下,在处理区块和达成共识方面表现出强大而有效的能力。该框架显示出了恢复能力和可靠性,达到了数据完整性、安全性和容错的水平。这些发现验证了 IoVBlockSecure 在满足 IoV 网络需求方面的潜力,同时也强调了在优化吞吐量和延迟以实现最佳性能方面需要改进的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IoV block secure: blockchain based secure data collection and validation framework for internet of vehicles network

In the expanding field of the Internet of Vehicles (IoV) where network communication meets technology there is a pressing need, for robust data management and security. This study introduces IoVBlockSecure a protocol based on technology that aims to ensure collection and validation of data within the dynamic and decentralized realm of vehicle networks. The primary objective of IoVBlockSecure is to enhance data security, integrity, efficiency, and scalability in IoV. It achieves this through the utilization of smart contracts advanced blockchain technology and consensus protocol. The framework tackles scalability challenges by integrating both off chain and on chain data storage solutions thereby boosting the security and reliability of data from roadside units (RSUs) and vehicles. Additionally IoVBlockSecure incorporates techniques, a unique consensus mechanism, and a sequential numbering system for data points to optimize data processing and validation. Furthermore, the framework demonstrates its adaptability and operational efficiency by implementing Layer 2 solutions for off chain activities. Comprehensive performance evaluations were conducted to assess aspects such as fault tolerance, data integrity, security measures effectiveness, transaction latency, system throughput, consensus efficacy, and block processing time, across node counts and operational loads. The evaluations conducted confirm that the model is robust and effective demonstrating capabilities, in processing blocks and achieving consensus when transaction latencies increase and system throughputs vary. The framework shows resilience and reliability achieving levels of data integrity, security, and fault tolerance. While these findings validate the potential of IoVBlockSecure in meeting the demands of IoV networks they also highlight areas for improvement in optimizing throughput and latency for optimal performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Peer-To-Peer Networking and Applications
Peer-To-Peer Networking and Applications COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
8.00
自引率
7.10%
发文量
145
审稿时长
12 months
期刊介绍: The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security. The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain. Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.
期刊最新文献
Are neck pain, disability, and deep neck flexor performance the same for the different types of temporomandibular disorders? Enhancing cloud network security with a trust-based service mechanism using k-anonymity and statistical machine learning approach Towards real-time non-preemptive multicast scheduling in reconfigurable data center networks Homomorphic multi-party computation for Internet of Medical Things BPPKS: A blockchain-based privacy preserving and keyword-searchable scheme for medical data sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1