Veluchamy M., Kumanan Somasundaram, Satheeshkumar V.
{"title":"后热处理添加剂制造的 SS316L 零件在润滑条件下的摩擦学行为研究","authors":"Veluchamy M., Kumanan Somasundaram, Satheeshkumar V.","doi":"10.1108/ilt-04-2024-0110","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this paper is to investigate the friction and wear mechanisms in lubricated sliding conditions of additively manufactured SS316L parts. The different viscous oils 5W30, 15W40, 20W50 and SAE140 are used. These investigations provide a theoretical basis for the high performance of printed and postheattreated SS316L.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Tribological tests were carried out on selective laser melting-made SS316L printed specimens and heat-treated specimens. The parameters in 15 min of test duration are 20 N of load, 200 rpm, 8 mm of pin diameter, 25 mm length, 80 mm of track diameter and EN31 counter disc body. This work presented the phenomena of lubrication regimes and their characterization, as identified by the Stribeck curve, and these regimes affect the tribological properties of additively manufactured SS316L under the influence of industrial viscous lubricants. The results are observed using Scanning electron microscope (SEM), X-ray diffraction (XRD) and wear tests.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The observations indicate that additively manufactured SS316L shows a reduced coefficient of friction (COF) and specific wear rate (SWR). This is credited to the utilization of different viscous lubricants.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This exclusive research demonstrates how various viscous lubricants affect the COF and SWR of printed and post-heat-treated SS316L parts. Lambda (λ), lubricant film thickness (h<sub>0</sub>), surface roughness and wear mechanisms are studied and reported.</p><!--/ Abstract__block -->\n<h3>Peer review</h3>\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0110/</p><!--/ Abstract__block -->","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations on tribological behavior under lubricated condition of post heat treated additively manufactured SS316L parts\",\"authors\":\"Veluchamy M., Kumanan Somasundaram, Satheeshkumar V.\",\"doi\":\"10.1108/ilt-04-2024-0110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The purpose of this paper is to investigate the friction and wear mechanisms in lubricated sliding conditions of additively manufactured SS316L parts. The different viscous oils 5W30, 15W40, 20W50 and SAE140 are used. These investigations provide a theoretical basis for the high performance of printed and postheattreated SS316L.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>Tribological tests were carried out on selective laser melting-made SS316L printed specimens and heat-treated specimens. The parameters in 15 min of test duration are 20 N of load, 200 rpm, 8 mm of pin diameter, 25 mm length, 80 mm of track diameter and EN31 counter disc body. This work presented the phenomena of lubrication regimes and their characterization, as identified by the Stribeck curve, and these regimes affect the tribological properties of additively manufactured SS316L under the influence of industrial viscous lubricants. The results are observed using Scanning electron microscope (SEM), X-ray diffraction (XRD) and wear tests.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The observations indicate that additively manufactured SS316L shows a reduced coefficient of friction (COF) and specific wear rate (SWR). This is credited to the utilization of different viscous lubricants.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This exclusive research demonstrates how various viscous lubricants affect the COF and SWR of printed and post-heat-treated SS316L parts. Lambda (λ), lubricant film thickness (h<sub>0</sub>), surface roughness and wear mechanisms are studied and reported.</p><!--/ Abstract__block -->\\n<h3>Peer review</h3>\\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0110/</p><!--/ Abstract__block -->\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ilt-04-2024-0110\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-04-2024-0110","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigations on tribological behavior under lubricated condition of post heat treated additively manufactured SS316L parts
Purpose
The purpose of this paper is to investigate the friction and wear mechanisms in lubricated sliding conditions of additively manufactured SS316L parts. The different viscous oils 5W30, 15W40, 20W50 and SAE140 are used. These investigations provide a theoretical basis for the high performance of printed and postheattreated SS316L.
Design/methodology/approach
Tribological tests were carried out on selective laser melting-made SS316L printed specimens and heat-treated specimens. The parameters in 15 min of test duration are 20 N of load, 200 rpm, 8 mm of pin diameter, 25 mm length, 80 mm of track diameter and EN31 counter disc body. This work presented the phenomena of lubrication regimes and their characterization, as identified by the Stribeck curve, and these regimes affect the tribological properties of additively manufactured SS316L under the influence of industrial viscous lubricants. The results are observed using Scanning electron microscope (SEM), X-ray diffraction (XRD) and wear tests.
Findings
The observations indicate that additively manufactured SS316L shows a reduced coefficient of friction (COF) and specific wear rate (SWR). This is credited to the utilization of different viscous lubricants.
Originality/value
This exclusive research demonstrates how various viscous lubricants affect the COF and SWR of printed and post-heat-treated SS316L parts. Lambda (λ), lubricant film thickness (h0), surface roughness and wear mechanisms are studied and reported.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0110/
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.