Junjie Gong, Zhixiang Li, Qingqing Lin, Kunhong Hu
{"title":"以羧化纳米 MoS2/闪长岩为催化剂合成的癸二酸二正辛酯的摩擦学性能","authors":"Junjie Gong, Zhixiang Li, Qingqing Lin, Kunhong Hu","doi":"10.1108/ilt-12-2023-0426","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to explore the synthesis and tribological performances of di-n-octyl sebacate (DOS) synthesized with spherical nano-MoS<sub>2</sub>/sericite (SMS) and carboxylated SMS (CSMS) as catalysts.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>SMS and CSMS were used as esterification catalysts to synthesize DOS from sebacic acid and n-octanol. The two catalysts were <em>in situ</em> dispersed in the synthesized DOS after the reaction to form suspensions. The tribological performances of the two suspensions after 20 days of storage were studied.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>CSMS was more stably dispersed in DOS than SMS, and they reduced friction by 55.6% and 22.2% and wear by 51.3% and 56.5%, respectively. Such results were mainly caused by the COOH on CSMS, which was more conducive to improving the dispersion and friction reduction of CSMS than wear resistance. Another possible reason was the difference between the dispersion amounts of CSMS and SMS in DOS. The sericite of SMS was converted into SiO<sub>2</sub> to enhance wear resistance, while that of CSMS only partially generated SiO<sub>2</sub>, and the rest still remained on the surface to reduce friction.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This work provides a more effective SMS catalytical way for DOS synthesis than the traditional inorganic acid catalytical method. SMS does not need to be separated after reaction and can be dispersed directly in DOS as a lubricant additive. Replacing SMS with CSMS can produce a more stable suspension and reduce friction significantly. This work combined the advantages of surface carboxylation modification and <em>in situ</em> catalytic dispersion and provided alternatives for the synthesis of DOS and the dispersion of MoS<sub>2</sub>-based lubricant additives.</p><!--/ Abstract__block -->","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tribological performance of di-n-octyl sebacate synthesized with carboxylated nano-MoS2/sericite as catalyst\",\"authors\":\"Junjie Gong, Zhixiang Li, Qingqing Lin, Kunhong Hu\",\"doi\":\"10.1108/ilt-12-2023-0426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This study aims to explore the synthesis and tribological performances of di-n-octyl sebacate (DOS) synthesized with spherical nano-MoS<sub>2</sub>/sericite (SMS) and carboxylated SMS (CSMS) as catalysts.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>SMS and CSMS were used as esterification catalysts to synthesize DOS from sebacic acid and n-octanol. The two catalysts were <em>in situ</em> dispersed in the synthesized DOS after the reaction to form suspensions. The tribological performances of the two suspensions after 20 days of storage were studied.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>CSMS was more stably dispersed in DOS than SMS, and they reduced friction by 55.6% and 22.2% and wear by 51.3% and 56.5%, respectively. Such results were mainly caused by the COOH on CSMS, which was more conducive to improving the dispersion and friction reduction of CSMS than wear resistance. Another possible reason was the difference between the dispersion amounts of CSMS and SMS in DOS. The sericite of SMS was converted into SiO<sub>2</sub> to enhance wear resistance, while that of CSMS only partially generated SiO<sub>2</sub>, and the rest still remained on the surface to reduce friction.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This work provides a more effective SMS catalytical way for DOS synthesis than the traditional inorganic acid catalytical method. SMS does not need to be separated after reaction and can be dispersed directly in DOS as a lubricant additive. Replacing SMS with CSMS can produce a more stable suspension and reduce friction significantly. This work combined the advantages of surface carboxylation modification and <em>in situ</em> catalytic dispersion and provided alternatives for the synthesis of DOS and the dispersion of MoS<sub>2</sub>-based lubricant additives.</p><!--/ Abstract__block -->\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ilt-12-2023-0426\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-12-2023-0426","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
目的 本研究旨在探讨以球形纳米 MoS2/sericite(SMS)和羧基化 SMS(CSMS)为催化剂合成的癸二酸二正辛酯(DOS)的合成及其摩擦学性能。反应结束后,将两种催化剂原位分散在合成的 DOS 中,形成悬浮液。结果表明,CSMS 比 SMS 更稳定地分散在 DOS 中,它们分别减少了 55.6% 和 22.2% 的摩擦和 51.3% 和 56.5% 的磨损。造成这种结果的主要原因是 CSMS 上的 COOH 比耐磨性更有利于提高 CSMS 的分散性和减摩性。另一个可能的原因是 CSMS 和 SMS 在 DOS 中的分散量不同。SMS 中的绢云母被转化为 SiO2 以增强耐磨性,而 CSMS 中的绢云母只生成了部分 SiO2,其余仍留在表面以减少摩擦。SMS 在反应后无需分离,可直接分散在 DOS 中作为润滑油添加剂。用 CSMS 替代 SMS 可以产生更稳定的悬浮液,并显著减少摩擦。这项工作结合了表面羧化改性和原位催化分散的优点,为 DOS 的合成和基于 MoS2 的润滑油添加剂的分散提供了替代方法。
Tribological performance of di-n-octyl sebacate synthesized with carboxylated nano-MoS2/sericite as catalyst
Purpose
This study aims to explore the synthesis and tribological performances of di-n-octyl sebacate (DOS) synthesized with spherical nano-MoS2/sericite (SMS) and carboxylated SMS (CSMS) as catalysts.
Design/methodology/approach
SMS and CSMS were used as esterification catalysts to synthesize DOS from sebacic acid and n-octanol. The two catalysts were in situ dispersed in the synthesized DOS after the reaction to form suspensions. The tribological performances of the two suspensions after 20 days of storage were studied.
Findings
CSMS was more stably dispersed in DOS than SMS, and they reduced friction by 55.6% and 22.2% and wear by 51.3% and 56.5%, respectively. Such results were mainly caused by the COOH on CSMS, which was more conducive to improving the dispersion and friction reduction of CSMS than wear resistance. Another possible reason was the difference between the dispersion amounts of CSMS and SMS in DOS. The sericite of SMS was converted into SiO2 to enhance wear resistance, while that of CSMS only partially generated SiO2, and the rest still remained on the surface to reduce friction.
Originality/value
This work provides a more effective SMS catalytical way for DOS synthesis than the traditional inorganic acid catalytical method. SMS does not need to be separated after reaction and can be dispersed directly in DOS as a lubricant additive. Replacing SMS with CSMS can produce a more stable suspension and reduce friction significantly. This work combined the advantages of surface carboxylation modification and in situ catalytic dispersion and provided alternatives for the synthesis of DOS and the dispersion of MoS2-based lubricant additives.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.