David Gabauer, Rangan Gupta, Sayar Karmakar, Joshua Nielsen
{"title":"股市泡沫与黄金回报率和波动率的可预测性","authors":"David Gabauer, Rangan Gupta, Sayar Karmakar, Joshua Nielsen","doi":"10.1002/asmb.2887","DOIUrl":null,"url":null,"abstract":"In this article, multi‐scale LPPLS confidence indicator approach is used to detect both positive and negative bubbles at short‐, medium‐, and long‐term horizons for the stock markets of the G7 and the BRICS countries. This enables detecting major crashes and rallies in the 12 stock markets over the period of the 1st week of January, 1973 to the 2nd week of September, 2020. Similar timing of strong (positive and negative) LPPLS indicator values across both G7 and BRICS countries was also observed, suggesting interconnectedness of the extreme movements in these stock markets. Next, these indicators were utilized to forecast gold returns and its volatility, using a method involving block means of residuals obtained from the popular LASSO routine, given that the number of covariates ranged between 42 and 72, and gold returns demonstrated a heavy upper tail. The finding was, these bubbles indicators, particularly when both positive and negative bubbles are considered simultaneously, can accurately forecast gold returns at short‐ to medium‐term, and also time‐varying estimates of gold returns volatility to a lesser extent. The results of this paper have important implications for the portfolio decisions of investors who seek a safe haven during boom‐bust cycles of major global stock markets.","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stock market bubbles and the forecastability of gold returns and volatility\",\"authors\":\"David Gabauer, Rangan Gupta, Sayar Karmakar, Joshua Nielsen\",\"doi\":\"10.1002/asmb.2887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, multi‐scale LPPLS confidence indicator approach is used to detect both positive and negative bubbles at short‐, medium‐, and long‐term horizons for the stock markets of the G7 and the BRICS countries. This enables detecting major crashes and rallies in the 12 stock markets over the period of the 1st week of January, 1973 to the 2nd week of September, 2020. Similar timing of strong (positive and negative) LPPLS indicator values across both G7 and BRICS countries was also observed, suggesting interconnectedness of the extreme movements in these stock markets. Next, these indicators were utilized to forecast gold returns and its volatility, using a method involving block means of residuals obtained from the popular LASSO routine, given that the number of covariates ranged between 42 and 72, and gold returns demonstrated a heavy upper tail. The finding was, these bubbles indicators, particularly when both positive and negative bubbles are considered simultaneously, can accurately forecast gold returns at short‐ to medium‐term, and also time‐varying estimates of gold returns volatility to a lesser extent. The results of this paper have important implications for the portfolio decisions of investors who seek a safe haven during boom‐bust cycles of major global stock markets.\",\"PeriodicalId\":55495,\"journal\":{\"name\":\"Applied Stochastic Models in Business and Industry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Stochastic Models in Business and Industry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/asmb.2887\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/asmb.2887","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Stock market bubbles and the forecastability of gold returns and volatility
In this article, multi‐scale LPPLS confidence indicator approach is used to detect both positive and negative bubbles at short‐, medium‐, and long‐term horizons for the stock markets of the G7 and the BRICS countries. This enables detecting major crashes and rallies in the 12 stock markets over the period of the 1st week of January, 1973 to the 2nd week of September, 2020. Similar timing of strong (positive and negative) LPPLS indicator values across both G7 and BRICS countries was also observed, suggesting interconnectedness of the extreme movements in these stock markets. Next, these indicators were utilized to forecast gold returns and its volatility, using a method involving block means of residuals obtained from the popular LASSO routine, given that the number of covariates ranged between 42 and 72, and gold returns demonstrated a heavy upper tail. The finding was, these bubbles indicators, particularly when both positive and negative bubbles are considered simultaneously, can accurately forecast gold returns at short‐ to medium‐term, and also time‐varying estimates of gold returns volatility to a lesser extent. The results of this paper have important implications for the portfolio decisions of investors who seek a safe haven during boom‐bust cycles of major global stock markets.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.