Kanji Sato, Akiko Takeda, Reiichiro Kawai, Taiji Suzuki
{"title":"非凸约束优化的反射梯度朗格文动力学收敛误差分析","authors":"Kanji Sato, Akiko Takeda, Reiichiro Kawai, Taiji Suzuki","doi":"10.1007/s13160-024-00667-1","DOIUrl":null,"url":null,"abstract":"<p>Gradient Langevin dynamics and a variety of its variants have attracted increasing attention owing to their convergence towards the global optimal solution, initially in the unconstrained convex framework while recently even in convex constrained non-convex problems. In the present work, we extend those frameworks to non-convex problems on a non-convex feasible region with a global optimization algorithm built upon reflected gradient Langevin dynamics and derive its convergence rates. By effectively making use of its reflection at the boundary in combination with the probabilistic representation for the Poisson equation with the Neumann boundary condition, we present promising convergence rates, particularly faster than the existing one for convex constrained non-convex problems.</p>","PeriodicalId":50264,"journal":{"name":"Japan Journal of Industrial and Applied Mathematics","volume":"32 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence error analysis of reflected gradient Langevin dynamics for non-convex constrained optimization\",\"authors\":\"Kanji Sato, Akiko Takeda, Reiichiro Kawai, Taiji Suzuki\",\"doi\":\"10.1007/s13160-024-00667-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gradient Langevin dynamics and a variety of its variants have attracted increasing attention owing to their convergence towards the global optimal solution, initially in the unconstrained convex framework while recently even in convex constrained non-convex problems. In the present work, we extend those frameworks to non-convex problems on a non-convex feasible region with a global optimization algorithm built upon reflected gradient Langevin dynamics and derive its convergence rates. By effectively making use of its reflection at the boundary in combination with the probabilistic representation for the Poisson equation with the Neumann boundary condition, we present promising convergence rates, particularly faster than the existing one for convex constrained non-convex problems.</p>\",\"PeriodicalId\":50264,\"journal\":{\"name\":\"Japan Journal of Industrial and Applied Mathematics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japan Journal of Industrial and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13160-024-00667-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Journal of Industrial and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13160-024-00667-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Convergence error analysis of reflected gradient Langevin dynamics for non-convex constrained optimization
Gradient Langevin dynamics and a variety of its variants have attracted increasing attention owing to their convergence towards the global optimal solution, initially in the unconstrained convex framework while recently even in convex constrained non-convex problems. In the present work, we extend those frameworks to non-convex problems on a non-convex feasible region with a global optimization algorithm built upon reflected gradient Langevin dynamics and derive its convergence rates. By effectively making use of its reflection at the boundary in combination with the probabilistic representation for the Poisson equation with the Neumann boundary condition, we present promising convergence rates, particularly faster than the existing one for convex constrained non-convex problems.
期刊介绍:
Japan Journal of Industrial and Applied Mathematics (JJIAM) is intended to provide an international forum for the expression of new ideas, as well as a site for the presentation of original research in various fields of the mathematical sciences. Consequently the most welcome types of articles are those which provide new insights into and methods for mathematical structures of various phenomena in the natural, social and industrial sciences, those which link real-world phenomena and mathematics through modeling and analysis, and those which impact the development of the mathematical sciences. The scope of the journal covers applied mathematical analysis, computational techniques and industrial mathematics.