{"title":"格林伯格-霍恩-蔡林格关联的未来输入依赖模型","authors":"Izhar Neder, Nathan Argaman","doi":"10.1103/physreva.110.032209","DOIUrl":null,"url":null,"abstract":"It is widely appreciated, due to Bell's theorem, that quantum phenomena are inconsistent with local-realist models. In this context, locality refers to local causality, and there is thus an open possibility for reproducing the quantum predictions with models which internally violate the causal arrow of time, while otherwise adhering to the relevant locality condition. So far, this possibility has been demonstrated only at a toy-model level, and only for systems involving one or two spins (or photons). The present work extends one of these models to quantum correlations between three or more spins which are entangled in the Greenberger-Horne-Zeilinger state.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":"45 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Future-input-dependent model for Greenberger-Horne-Zeilinger correlations\",\"authors\":\"Izhar Neder, Nathan Argaman\",\"doi\":\"10.1103/physreva.110.032209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is widely appreciated, due to Bell's theorem, that quantum phenomena are inconsistent with local-realist models. In this context, locality refers to local causality, and there is thus an open possibility for reproducing the quantum predictions with models which internally violate the causal arrow of time, while otherwise adhering to the relevant locality condition. So far, this possibility has been demonstrated only at a toy-model level, and only for systems involving one or two spins (or photons). The present work extends one of these models to quantum correlations between three or more spins which are entangled in the Greenberger-Horne-Zeilinger state.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.032209\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.032209","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Future-input-dependent model for Greenberger-Horne-Zeilinger correlations
It is widely appreciated, due to Bell's theorem, that quantum phenomena are inconsistent with local-realist models. In this context, locality refers to local causality, and there is thus an open possibility for reproducing the quantum predictions with models which internally violate the causal arrow of time, while otherwise adhering to the relevant locality condition. So far, this possibility has been demonstrated only at a toy-model level, and only for systems involving one or two spins (or photons). The present work extends one of these models to quantum correlations between three or more spins which are entangled in the Greenberger-Horne-Zeilinger state.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics