Ryan Hogan, Giulia Marcucci, Akbar Safari, A. Nicholas Black, Boris Braverman, Jeremy Upham, Robert W. Boyd
{"title":"移动非线性介质中的光束传播建模","authors":"Ryan Hogan, Giulia Marcucci, Akbar Safari, A. Nicholas Black, Boris Braverman, Jeremy Upham, Robert W. Boyd","doi":"10.1103/physreva.110.033515","DOIUrl":null,"url":null,"abstract":"Fully describing light propagation in a rotating, anisotropic medium with thermal nonlinearity requires modeling the interplay between nonlinear refraction, birefringence, and the nonlinear group index. Incorporating these factors into a generalized coupled nonlinear Schrödinger equation and fitting them to recent experimental results reveals two key relationships: the photon drag effect can have a nonlinear component that is dependent on the motion of the medium, and the temporal dynamics of the moving birefringent nonlinear medium create distorted figure-eight-like transverse trajectories at the output. The beam trajectory can be accurately modeled with a full understanding of the propagation effects. Efficiently modeling these effects and accurately predicting the beam's output position has implications for optimizing applications in velocimetry and beam steering. Understanding the roles of competitive nonlinearities gives insight into the creation or suppression of nonlinear phenomena like self-action effects.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":"9 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling beam propagation in a moving nonlinear medium\",\"authors\":\"Ryan Hogan, Giulia Marcucci, Akbar Safari, A. Nicholas Black, Boris Braverman, Jeremy Upham, Robert W. Boyd\",\"doi\":\"10.1103/physreva.110.033515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully describing light propagation in a rotating, anisotropic medium with thermal nonlinearity requires modeling the interplay between nonlinear refraction, birefringence, and the nonlinear group index. Incorporating these factors into a generalized coupled nonlinear Schrödinger equation and fitting them to recent experimental results reveals two key relationships: the photon drag effect can have a nonlinear component that is dependent on the motion of the medium, and the temporal dynamics of the moving birefringent nonlinear medium create distorted figure-eight-like transverse trajectories at the output. The beam trajectory can be accurately modeled with a full understanding of the propagation effects. Efficiently modeling these effects and accurately predicting the beam's output position has implications for optimizing applications in velocimetry and beam steering. Understanding the roles of competitive nonlinearities gives insight into the creation or suppression of nonlinear phenomena like self-action effects.\",\"PeriodicalId\":20146,\"journal\":{\"name\":\"Physical Review A\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.110.033515\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.033515","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Modeling beam propagation in a moving nonlinear medium
Fully describing light propagation in a rotating, anisotropic medium with thermal nonlinearity requires modeling the interplay between nonlinear refraction, birefringence, and the nonlinear group index. Incorporating these factors into a generalized coupled nonlinear Schrödinger equation and fitting them to recent experimental results reveals two key relationships: the photon drag effect can have a nonlinear component that is dependent on the motion of the medium, and the temporal dynamics of the moving birefringent nonlinear medium create distorted figure-eight-like transverse trajectories at the output. The beam trajectory can be accurately modeled with a full understanding of the propagation effects. Efficiently modeling these effects and accurately predicting the beam's output position has implications for optimizing applications in velocimetry and beam steering. Understanding the roles of competitive nonlinearities gives insight into the creation or suppression of nonlinear phenomena like self-action effects.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics