单晶反铁磁性 Mn2Au 中的磁各向异性

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Physical Review Materials Pub Date : 2024-08-30 DOI:10.1103/physrevmaterials.8.084413
Mebatsion S. Gebre, Rebecca K. Banner, Kisung Kang, Kejian Qu, Huibo Cao, André Schleife, Daniel P. Shoemaker
{"title":"单晶反铁磁性 Mn2Au 中的磁各向异性","authors":"Mebatsion S. Gebre, Rebecca K. Banner, Kisung Kang, Kejian Qu, Huibo Cao, André Schleife, Daniel P. Shoemaker","doi":"10.1103/physrevmaterials.8.084413","DOIUrl":null,"url":null,"abstract":"Multiple recent studies have identified the metallic antiferromagnet <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> to be a candidate for spintronic applications due to apparent in-plane anisotropy, preserved magnetic properties above room temperature, and current-induced Néel vector switching. Crystal growth is complicated by the fact that <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> melts incongruently. We present a bismuth flux method to grow millimeter-scale bulk single crystals of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> in order to examine the intrinsic anisotropic electrical and magnetic properties. Flux quenching experiments reveal that the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> crystals precipitate below <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>550</mn><msup><mspace width=\"0.16em\"></mspace><mo>∘</mo></msup><mi mathvariant=\"normal\">C</mi></mrow></math>, about <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>100</mn><msup><mspace width=\"0.16em\"></mspace><mo>∘</mo></msup><mi mathvariant=\"normal\">C</mi></mrow></math> below the decomposition temperature of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math>. Bulk <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> crystals have a room-temperature resistivity of 16–19 <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>µ</mi><mi mathvariant=\"normal\">Ω</mi><mspace width=\"0.16em\"></mspace><mi>cm</mi></mrow></math> and a residual resistivity ratio of 41. <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> crystals have a dimensionless susceptibility on the order of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></math> (SI units), comparable to calculated and experimental reports on powder samples. Single-crystal neutron diffraction confirms the in-plane magnetic structure. The tetragonal symmetry of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> constrains the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>a</mi><mi>b</mi></mrow></math>-plane magnetic susceptibility to be constant, meaning that <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>χ</mi><mn>100</mn></msub><mo>=</mo><msub><mi>χ</mi><mn>110</mn></msub></mrow></math> in the low-field limit, below any spin-flop transition. We find that three measured magnetic susceptibilities <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>χ</mi><mn>100</mn></msub><mo>,</mo><mo> </mo><msub><mi>χ</mi><mn>110</mn></msub></math>, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>χ</mi><mn>001</mn></msub></math> are the same order of magnitude and agree with the calculated prediction, meaning the low-field susceptibility of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> is quite isotropic, despite clear differences in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>a</mi><mi>b</mi></mrow></math>-plane and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>a</mi><mi>c</mi></mrow></math>-plane magnetocrystalline anisotropy. <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> is calculated to have an extremely high in-plane spin-flop field above 30 T, which is much larger than that of another in-plane antiferromagnet, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Fe</mi><mn>2</mn></msub><mi>As</mi></mrow></math> (less than 1 T). The subtle anisotropy of intrinsic susceptibilities may lead to dominating effects from shape, crystalline texture, strain, and defects in devices that attempt spin readout in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math>.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic anisotropy in single-crystalline antiferromagnetic Mn2Au\",\"authors\":\"Mebatsion S. Gebre, Rebecca K. Banner, Kisung Kang, Kejian Qu, Huibo Cao, André Schleife, Daniel P. Shoemaker\",\"doi\":\"10.1103/physrevmaterials.8.084413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple recent studies have identified the metallic antiferromagnet <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> to be a candidate for spintronic applications due to apparent in-plane anisotropy, preserved magnetic properties above room temperature, and current-induced Néel vector switching. Crystal growth is complicated by the fact that <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> melts incongruently. We present a bismuth flux method to grow millimeter-scale bulk single crystals of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> in order to examine the intrinsic anisotropic electrical and magnetic properties. Flux quenching experiments reveal that the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> crystals precipitate below <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>550</mn><msup><mspace width=\\\"0.16em\\\"></mspace><mo>∘</mo></msup><mi mathvariant=\\\"normal\\\">C</mi></mrow></math>, about <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>100</mn><msup><mspace width=\\\"0.16em\\\"></mspace><mo>∘</mo></msup><mi mathvariant=\\\"normal\\\">C</mi></mrow></math> below the decomposition temperature of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math>. Bulk <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> crystals have a room-temperature resistivity of 16–19 <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>µ</mi><mi mathvariant=\\\"normal\\\">Ω</mi><mspace width=\\\"0.16em\\\"></mspace><mi>cm</mi></mrow></math> and a residual resistivity ratio of 41. <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> crystals have a dimensionless susceptibility on the order of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></math> (SI units), comparable to calculated and experimental reports on powder samples. Single-crystal neutron diffraction confirms the in-plane magnetic structure. The tetragonal symmetry of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> constrains the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>a</mi><mi>b</mi></mrow></math>-plane magnetic susceptibility to be constant, meaning that <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>χ</mi><mn>100</mn></msub><mo>=</mo><msub><mi>χ</mi><mn>110</mn></msub></mrow></math> in the low-field limit, below any spin-flop transition. We find that three measured magnetic susceptibilities <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>χ</mi><mn>100</mn></msub><mo>,</mo><mo> </mo><msub><mi>χ</mi><mn>110</mn></msub></math>, and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>χ</mi><mn>001</mn></msub></math> are the same order of magnitude and agree with the calculated prediction, meaning the low-field susceptibility of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> is quite isotropic, despite clear differences in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>a</mi><mi>b</mi></mrow></math>-plane and <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>a</mi><mi>c</mi></mrow></math>-plane magnetocrystalline anisotropy. <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math> is calculated to have an extremely high in-plane spin-flop field above 30 T, which is much larger than that of another in-plane antiferromagnet, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Fe</mi><mn>2</mn></msub><mi>As</mi></mrow></math> (less than 1 T). The subtle anisotropy of intrinsic susceptibilities may lead to dominating effects from shape, crystalline texture, strain, and defects in devices that attempt spin readout in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><msub><mi>Mn</mi><mn>2</mn></msub><mi>Au</mi></mrow></math>.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.084413\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.084413","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近的多项研究发现,金属反铁磁体 Mn2Au 具有明显的面内各向异性、在室温以上仍保持磁性能以及电流诱导的奈尔矢量开关,因此是自旋电子应用的候选材料。由于 Mn2Au 的熔化不协调,晶体生长变得复杂。我们提出了一种铋通量法来生长毫米级的 Mn2Au 块状单晶体,以研究其内在各向异性的电学和磁学特性。通量淬火实验显示,Mn2Au 晶体在 550∘C以下析出,比 Mn2Au 的分解温度低约 100∘C。块状 Mn2Au 晶体的室温电阻率为 16-19 µΩcm,残余电阻率比为 41。Mn2Au 晶体的无量纲电感值为 10-4(国际单位制),与粉末样品的计算和实验报告相当。单晶中子衍射证实了面内磁性结构。Mn2Au 的四方对称性限制了非平面磁感应强度为常数,这意味着在低磁场极限,即任何自旋翻转转变以下,χ100=χ110。我们发现,测量到的三个磁感应强度 χ100、χ110 和 χ001 数量级相同,并且与计算预测一致,这意味着 Mn2Au 的低场磁感应强度是相当各向同性的,尽管 ab 平面和 ac 平面磁晶各向异性存在明显差异。根据计算,Mn2Au 在 30 T 以上具有极高的面内自旋翻转场,远大于另一种面内反铁磁体 Fe2As(小于 1 T)。本征电感的微妙各向异性可能会导致在 Mn2Au 中尝试自旋读出的设备中,形状、晶体纹理、应变和缺陷产生主导效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetic anisotropy in single-crystalline antiferromagnetic Mn2Au
Multiple recent studies have identified the metallic antiferromagnet Mn2Au to be a candidate for spintronic applications due to apparent in-plane anisotropy, preserved magnetic properties above room temperature, and current-induced Néel vector switching. Crystal growth is complicated by the fact that Mn2Au melts incongruently. We present a bismuth flux method to grow millimeter-scale bulk single crystals of Mn2Au in order to examine the intrinsic anisotropic electrical and magnetic properties. Flux quenching experiments reveal that the Mn2Au crystals precipitate below 550C, about 100C below the decomposition temperature of Mn2Au. Bulk Mn2Au crystals have a room-temperature resistivity of 16–19 µΩcm and a residual resistivity ratio of 41. Mn2Au crystals have a dimensionless susceptibility on the order of 104 (SI units), comparable to calculated and experimental reports on powder samples. Single-crystal neutron diffraction confirms the in-plane magnetic structure. The tetragonal symmetry of Mn2Au constrains the ab-plane magnetic susceptibility to be constant, meaning that χ100=χ110 in the low-field limit, below any spin-flop transition. We find that three measured magnetic susceptibilities χ100, χ110, and χ001 are the same order of magnitude and agree with the calculated prediction, meaning the low-field susceptibility of Mn2Au is quite isotropic, despite clear differences in ab-plane and ac-plane magnetocrystalline anisotropy. Mn2Au is calculated to have an extremely high in-plane spin-flop field above 30 T, which is much larger than that of another in-plane antiferromagnet, Fe2As (less than 1 T). The subtle anisotropy of intrinsic susceptibilities may lead to dominating effects from shape, crystalline texture, strain, and defects in devices that attempt spin readout in Mn2Au.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Materials
Physical Review Materials Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
5.80
自引率
5.90%
发文量
611
期刊介绍: Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.
期刊最新文献
Impact of grain boundary energy anisotropy on grain growth Magnetization dependent anisotropic topological properties in EuCuP Fluorite-type materials in the monolayer limit Intrinsic origins of broad luminescence in melt-grown ZnGa2O4 single crystals Subjugating extensive magnetostructural temperature window and giant magnetocaloric effect in B-doped (MnNiSi)0.67(Fe2Ge)0.33 hexagonal system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1