A. Castellano, K. Alhada-Lahbabi, J. A. Arregi, V. Uhlíř, B. Perrin, C. Gourdon, D. Fournier, M. J. Verstraete, L. Thevenard
{"title":"从热反射实验和数值模拟看 FeRh 热导率的磁相依赖性","authors":"A. Castellano, K. Alhada-Lahbabi, J. A. Arregi, V. Uhlíř, B. Perrin, C. Gourdon, D. Fournier, M. J. Verstraete, L. Thevenard","doi":"10.1103/physrevmaterials.8.084411","DOIUrl":null,"url":null,"abstract":"FeRh is well known in its bulk form for a temperature-driven antiferromagnetic (AFM) to ferromagnetic (FM) transition near room temperature. It has aroused renewed interest in its thin-film form, with particular focus on its biaxial AFM magnetic anisotropy which could serve for data encoding, and the possibility to investigate laser-assisted phase transitions, with varying contributions from electrons, phonons, and magnons. In order to estimate the typical temperature increase occurring in these experiments, we performed modulated thermoreflectance microscopy to determine the thermal conductivity <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>κ</mi></math> of FeRh. As often occurs upon alloying, and despite the good crystallinity of the layer, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>κ</mi></math> was found to be lower than the thermal conductivities of its constituting elements. More unexpectedly, given the electrically more conducting nature of the FM phase, it turned out to be three times lower in the FM phase compared to the AFM phase. This trend was confirmed by examining the temporal decay of incoherent phonons generated by a pulsed laser in both phases. To elucidate these results, first- and second-principles simulations were performed to estimate the phonon, magnon, and electron contributions to the thermal conductivity. They were found to be of the same order of magnitude, and to give a quantitative rendering of the experimentally observed <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>κ</mi><mi>AFM</mi></msub></math>. In the FM phase, however, simulations overestimate the low experimental values, implying very different (shorter) electron and magnon lifetimes.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic phase dependency of the thermal conductivity of FeRh from thermoreflectance experiments and numerical simulations\",\"authors\":\"A. Castellano, K. Alhada-Lahbabi, J. A. Arregi, V. Uhlíř, B. Perrin, C. Gourdon, D. Fournier, M. J. Verstraete, L. Thevenard\",\"doi\":\"10.1103/physrevmaterials.8.084411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FeRh is well known in its bulk form for a temperature-driven antiferromagnetic (AFM) to ferromagnetic (FM) transition near room temperature. It has aroused renewed interest in its thin-film form, with particular focus on its biaxial AFM magnetic anisotropy which could serve for data encoding, and the possibility to investigate laser-assisted phase transitions, with varying contributions from electrons, phonons, and magnons. In order to estimate the typical temperature increase occurring in these experiments, we performed modulated thermoreflectance microscopy to determine the thermal conductivity <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>κ</mi></math> of FeRh. As often occurs upon alloying, and despite the good crystallinity of the layer, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>κ</mi></math> was found to be lower than the thermal conductivities of its constituting elements. More unexpectedly, given the electrically more conducting nature of the FM phase, it turned out to be three times lower in the FM phase compared to the AFM phase. This trend was confirmed by examining the temporal decay of incoherent phonons generated by a pulsed laser in both phases. To elucidate these results, first- and second-principles simulations were performed to estimate the phonon, magnon, and electron contributions to the thermal conductivity. They were found to be of the same order of magnitude, and to give a quantitative rendering of the experimentally observed <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>κ</mi><mi>AFM</mi></msub></math>. In the FM phase, however, simulations overestimate the low experimental values, implying very different (shorter) electron and magnon lifetimes.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.084411\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.084411","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnetic phase dependency of the thermal conductivity of FeRh from thermoreflectance experiments and numerical simulations
FeRh is well known in its bulk form for a temperature-driven antiferromagnetic (AFM) to ferromagnetic (FM) transition near room temperature. It has aroused renewed interest in its thin-film form, with particular focus on its biaxial AFM magnetic anisotropy which could serve for data encoding, and the possibility to investigate laser-assisted phase transitions, with varying contributions from electrons, phonons, and magnons. In order to estimate the typical temperature increase occurring in these experiments, we performed modulated thermoreflectance microscopy to determine the thermal conductivity of FeRh. As often occurs upon alloying, and despite the good crystallinity of the layer, was found to be lower than the thermal conductivities of its constituting elements. More unexpectedly, given the electrically more conducting nature of the FM phase, it turned out to be three times lower in the FM phase compared to the AFM phase. This trend was confirmed by examining the temporal decay of incoherent phonons generated by a pulsed laser in both phases. To elucidate these results, first- and second-principles simulations were performed to estimate the phonon, magnon, and electron contributions to the thermal conductivity. They were found to be of the same order of magnitude, and to give a quantitative rendering of the experimentally observed . In the FM phase, however, simulations overestimate the low experimental values, implying very different (shorter) electron and magnon lifetimes.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.