Kevin Ye, Matan Menahem, Tommaso Salzillo, Florian Knoop, Boyang Zhao, Shanyuan Niu, Olle Hellman, Jayakanth Ravichandran, R. Jaramillo, Omer Yaffe
{"title":"卤化物和铬化包晶半导体的振动特性差异及其对光电性能的影响","authors":"Kevin Ye, Matan Menahem, Tommaso Salzillo, Florian Knoop, Boyang Zhao, Shanyuan Niu, Olle Hellman, Jayakanth Ravichandran, R. Jaramillo, Omer Yaffe","doi":"10.1103/physrevmaterials.8.085402","DOIUrl":null,"url":null,"abstract":"We report a comparative study of temperature-dependent photoluminescence and structural dynamics of two perovskite semiconductors, the chalcogenide <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math> and the halide <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math>. These materials have similar crystal structures and direct band gaps, but we find that they have quite distinct optoelectronic and vibrational properties. Both materials exhibit thermally activated nonradiative recombination, but the nonradiative recombination rate in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math> is four orders of magnitude faster than in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math>, for the crystals studied here. Raman spectroscopy reveals that the effects of phonon anharmonicity are far more pronounced in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math> than in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math>. Further, although both materials feature a large dielectric response due to low-energy polar optical phonons, the phonons in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math> are substantially lower in energy than in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math>. Our results suggest that electron-phonon coupling in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math> is more effective at nonradiative recombination than in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math> and that <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math> may also have a substantially higher concentration of nonradiative recombination centers than <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math>. The low defect concentration in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math> may be related to the ease of lattice reconfiguration, typified by anharmonic bonding. It remains to be seen to what extent these differences are inherent to the chalcogenide and halide perovskites and to what extent they can be affected by materials processing.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differing vibrational properties of halide and chalcogenide perovskite semiconductors and impact on optoelectronic performance\",\"authors\":\"Kevin Ye, Matan Menahem, Tommaso Salzillo, Florian Knoop, Boyang Zhao, Shanyuan Niu, Olle Hellman, Jayakanth Ravichandran, R. Jaramillo, Omer Yaffe\",\"doi\":\"10.1103/physrevmaterials.8.085402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a comparative study of temperature-dependent photoluminescence and structural dynamics of two perovskite semiconductors, the chalcogenide <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math> and the halide <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math>. These materials have similar crystal structures and direct band gaps, but we find that they have quite distinct optoelectronic and vibrational properties. Both materials exhibit thermally activated nonradiative recombination, but the nonradiative recombination rate in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math> is four orders of magnitude faster than in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math>, for the crystals studied here. Raman spectroscopy reveals that the effects of phonon anharmonicity are far more pronounced in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math> than in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math>. Further, although both materials feature a large dielectric response due to low-energy polar optical phonons, the phonons in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math> are substantially lower in energy than in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math>. Our results suggest that electron-phonon coupling in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math> is more effective at nonradiative recombination than in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math> and that <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math> may also have a substantially higher concentration of nonradiative recombination centers than <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math>. The low defect concentration in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math> may be related to the ease of lattice reconfiguration, typified by anharmonic bonding. It remains to be seen to what extent these differences are inherent to the chalcogenide and halide perovskites and to what extent they can be affected by materials processing.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.085402\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.085402","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Differing vibrational properties of halide and chalcogenide perovskite semiconductors and impact on optoelectronic performance
We report a comparative study of temperature-dependent photoluminescence and structural dynamics of two perovskite semiconductors, the chalcogenide and the halide . These materials have similar crystal structures and direct band gaps, but we find that they have quite distinct optoelectronic and vibrational properties. Both materials exhibit thermally activated nonradiative recombination, but the nonradiative recombination rate in is four orders of magnitude faster than in , for the crystals studied here. Raman spectroscopy reveals that the effects of phonon anharmonicity are far more pronounced in than in . Further, although both materials feature a large dielectric response due to low-energy polar optical phonons, the phonons in are substantially lower in energy than in . Our results suggest that electron-phonon coupling in is more effective at nonradiative recombination than in and that may also have a substantially higher concentration of nonradiative recombination centers than . The low defect concentration in may be related to the ease of lattice reconfiguration, typified by anharmonic bonding. It remains to be seen to what extent these differences are inherent to the chalcogenide and halide perovskites and to what extent they can be affected by materials processing.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.