卤化物和铬化包晶半导体的振动特性差异及其对光电性能的影响

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Physical Review Materials Pub Date : 2024-08-20 DOI:10.1103/physrevmaterials.8.085402
Kevin Ye, Matan Menahem, Tommaso Salzillo, Florian Knoop, Boyang Zhao, Shanyuan Niu, Olle Hellman, Jayakanth Ravichandran, R. Jaramillo, Omer Yaffe
{"title":"卤化物和铬化包晶半导体的振动特性差异及其对光电性能的影响","authors":"Kevin Ye, Matan Menahem, Tommaso Salzillo, Florian Knoop, Boyang Zhao, Shanyuan Niu, Olle Hellman, Jayakanth Ravichandran, R. Jaramillo, Omer Yaffe","doi":"10.1103/physrevmaterials.8.085402","DOIUrl":null,"url":null,"abstract":"We report a comparative study of temperature-dependent photoluminescence and structural dynamics of two perovskite semiconductors, the chalcogenide <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math> and the halide <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math>. These materials have similar crystal structures and direct band gaps, but we find that they have quite distinct optoelectronic and vibrational properties. Both materials exhibit thermally activated nonradiative recombination, but the nonradiative recombination rate in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math> is four orders of magnitude faster than in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math>, for the crystals studied here. Raman spectroscopy reveals that the effects of phonon anharmonicity are far more pronounced in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math> than in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math>. Further, although both materials feature a large dielectric response due to low-energy polar optical phonons, the phonons in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math> are substantially lower in energy than in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math>. Our results suggest that electron-phonon coupling in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math> is more effective at nonradiative recombination than in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math> and that <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math> may also have a substantially higher concentration of nonradiative recombination centers than <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math>. The low defect concentration in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math> may be related to the ease of lattice reconfiguration, typified by anharmonic bonding. It remains to be seen to what extent these differences are inherent to the chalcogenide and halide perovskites and to what extent they can be affected by materials processing.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differing vibrational properties of halide and chalcogenide perovskite semiconductors and impact on optoelectronic performance\",\"authors\":\"Kevin Ye, Matan Menahem, Tommaso Salzillo, Florian Knoop, Boyang Zhao, Shanyuan Niu, Olle Hellman, Jayakanth Ravichandran, R. Jaramillo, Omer Yaffe\",\"doi\":\"10.1103/physrevmaterials.8.085402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a comparative study of temperature-dependent photoluminescence and structural dynamics of two perovskite semiconductors, the chalcogenide <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math> and the halide <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math>. These materials have similar crystal structures and direct band gaps, but we find that they have quite distinct optoelectronic and vibrational properties. Both materials exhibit thermally activated nonradiative recombination, but the nonradiative recombination rate in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math> is four orders of magnitude faster than in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math>, for the crystals studied here. Raman spectroscopy reveals that the effects of phonon anharmonicity are far more pronounced in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math> than in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math>. Further, although both materials feature a large dielectric response due to low-energy polar optical phonons, the phonons in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math> are substantially lower in energy than in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math>. Our results suggest that electron-phonon coupling in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math> is more effective at nonradiative recombination than in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math> and that <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>BaZrS</mi><mn>3</mn></msub></math> may also have a substantially higher concentration of nonradiative recombination centers than <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math>. The low defect concentration in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Cs</mi><mi>Pb</mi><msub><mi>Br</mi><mn>3</mn></msub></mrow></math> may be related to the ease of lattice reconfiguration, typified by anharmonic bonding. It remains to be seen to what extent these differences are inherent to the chalcogenide and halide perovskites and to what extent they can be affected by materials processing.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.085402\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.085402","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了对两种包晶半导体--掺杂镓的 BaZrS3 和卤化物 CsPbBr3--随温度变化的光致发光和结构动力学的比较研究。这两种材料具有相似的晶体结构和直接带隙,但我们发现它们具有截然不同的光电和振动特性。这两种材料都表现出热激活非辐射重组,但就本文研究的晶体而言,BaZrS3 的非辐射重组速率比 CsPbBr3 快四个数量级。拉曼光谱显示,声子非谐波效应在 CsPbBr3 中要比在 BaZrS3 中明显得多。此外,尽管这两种材料都因低能极性光学声子而具有较大的介电响应,但 CsPbBr3 中的声子能量远远低于 BaZrS3。我们的研究结果表明,BaZrS3 中的电子-声子耦合比 CsPbBr3 中的非辐射重组更有效,而且 BaZrS3 中的非辐射重组中心浓度也可能比 CsPbBr3 中的高得多。CsPbBr3 中的低缺陷浓度可能与以非谐波键为典型代表的晶格重构容易有关。这些差异在多大程度上是钙钛矿和卤化物包晶所固有的,以及在多大程度上会受到材料加工的影响,还有待观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differing vibrational properties of halide and chalcogenide perovskite semiconductors and impact on optoelectronic performance
We report a comparative study of temperature-dependent photoluminescence and structural dynamics of two perovskite semiconductors, the chalcogenide BaZrS3 and the halide CsPbBr3. These materials have similar crystal structures and direct band gaps, but we find that they have quite distinct optoelectronic and vibrational properties. Both materials exhibit thermally activated nonradiative recombination, but the nonradiative recombination rate in BaZrS3 is four orders of magnitude faster than in CsPbBr3, for the crystals studied here. Raman spectroscopy reveals that the effects of phonon anharmonicity are far more pronounced in CsPbBr3 than in BaZrS3. Further, although both materials feature a large dielectric response due to low-energy polar optical phonons, the phonons in CsPbBr3 are substantially lower in energy than in BaZrS3. Our results suggest that electron-phonon coupling in BaZrS3 is more effective at nonradiative recombination than in CsPbBr3 and that BaZrS3 may also have a substantially higher concentration of nonradiative recombination centers than CsPbBr3. The low defect concentration in CsPbBr3 may be related to the ease of lattice reconfiguration, typified by anharmonic bonding. It remains to be seen to what extent these differences are inherent to the chalcogenide and halide perovskites and to what extent they can be affected by materials processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Materials
Physical Review Materials Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
5.80
自引率
5.90%
发文量
611
期刊介绍: Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.
期刊最新文献
Impact of grain boundary energy anisotropy on grain growth Magnetization dependent anisotropic topological properties in EuCuP Fluorite-type materials in the monolayer limit Intrinsic origins of broad luminescence in melt-grown ZnGa2O4 single crystals Subjugating extensive magnetostructural temperature window and giant magnetocaloric effect in B-doped (MnNiSi)0.67(Fe2Ge)0.33 hexagonal system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1