{"title":"第一原理计算得出的 CsSnI3 表面相图","authors":"Kejia Li, Chadawan Khamdang, Mengen Wang","doi":"10.1103/physrevmaterials.8.093401","DOIUrl":null,"url":null,"abstract":"<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>CsSnI</mi><mn>3</mn></msub></math> is widely studied as an environmentally friendly Pb-free perovskite material for optoelectronic device applications. To further improve material and device performance, it is important to understand the surface structures of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>CsSnI</mi><mn>3</mn></msub></math>. We generate surface structures with various stoichiometries, perform density functional theory calculations to create phase diagrams of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>CsSnI</mi><mn>3</mn></msub></math> (001), (110), and (100) surfaces, and determine the most stable surfaces under a wide range of Cs, Sn, and I chemical potentials. Under I-rich conditions, surfaces with Cs vacancies are stable, which lead to partially occupied surface states above the valence band maximum. Under I-poor conditions, we find the stoichiometric (100) surface to be stable under a wide region of the phase diagram, which does not have any surface states and can contribute to long charge-carrier lifetimes. Consequently, the I-poor (Sn-rich) conditions will be more beneficial to improve the device performance.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"149 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface phase diagram of CsSnI3 from first-principles calculations\",\"authors\":\"Kejia Li, Chadawan Khamdang, Mengen Wang\",\"doi\":\"10.1103/physrevmaterials.8.093401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>CsSnI</mi><mn>3</mn></msub></math> is widely studied as an environmentally friendly Pb-free perovskite material for optoelectronic device applications. To further improve material and device performance, it is important to understand the surface structures of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>CsSnI</mi><mn>3</mn></msub></math>. We generate surface structures with various stoichiometries, perform density functional theory calculations to create phase diagrams of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>CsSnI</mi><mn>3</mn></msub></math> (001), (110), and (100) surfaces, and determine the most stable surfaces under a wide range of Cs, Sn, and I chemical potentials. Under I-rich conditions, surfaces with Cs vacancies are stable, which lead to partially occupied surface states above the valence band maximum. Under I-poor conditions, we find the stoichiometric (100) surface to be stable under a wide region of the phase diagram, which does not have any surface states and can contribute to long charge-carrier lifetimes. Consequently, the I-poor (Sn-rich) conditions will be more beneficial to improve the device performance.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":\"149 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.093401\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.093401","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
CsSnI3 作为一种用于光电器件应用的环保型无铅包晶材料,已被广泛研究。为了进一步提高材料和器件的性能,了解 CsSnI3 的表面结构非常重要。我们生成了具有各种化学计量的表面结构,进行了密度泛函理论计算,绘制了 CsSnI3 (001)、(110) 和 (100) 表面的相图,并确定了在各种 Cs、Sn 和 I 化学势下最稳定的表面。在 I 丰富的条件下,具有铯空位的表面是稳定的,这会导致价带最大值以上的部分占据表面态。在 I 贫乏的条件下,我们发现化学计量(100)表面在相图的很宽区域内是稳定的,它没有任何表面态,可导致较长的电荷载流子寿命。因此,贫离子(富含锡)条件更有利于提高器件性能。
Surface phase diagram of CsSnI3 from first-principles calculations
is widely studied as an environmentally friendly Pb-free perovskite material for optoelectronic device applications. To further improve material and device performance, it is important to understand the surface structures of . We generate surface structures with various stoichiometries, perform density functional theory calculations to create phase diagrams of the (001), (110), and (100) surfaces, and determine the most stable surfaces under a wide range of Cs, Sn, and I chemical potentials. Under I-rich conditions, surfaces with Cs vacancies are stable, which lead to partially occupied surface states above the valence band maximum. Under I-poor conditions, we find the stoichiometric (100) surface to be stable under a wide region of the phase diagram, which does not have any surface states and can contribute to long charge-carrier lifetimes. Consequently, the I-poor (Sn-rich) conditions will be more beneficial to improve the device performance.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.