{"title":"在 SmMn2Ge2 的两个铁磁态中调谐从大到零的本征反常霍尔效应","authors":"Mahima Singh, Jyotirmoy Sau, Banik Rai, Arunanshu Panda, Manoranjan Kumar, Nitesh Kumar","doi":"10.1103/physrevmaterials.8.084201","DOIUrl":null,"url":null,"abstract":"The intrinsic anomalous Hall conductivity (AHC) in a ferromagnetic metal is completely determined by its band structure. Since the spin orientation direction is an important band–structure tuning parameter, it is highly desirable to study the anomalous Hall effect in a system with multiple spin reorientation transitions. We study a layered tetragonal room temperature ferromagnet <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Sm</mi><msub><mi>Mn</mi><mn>2</mn></msub><msub><mi>Ge</mi><mn>2</mn></msub></mrow></math>, which gives us the opportunity to measure magnetotransport properties where the long <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>c</mi></math>-axis and the short <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi></math>-axis can both be magnetically easy axes depending on the temperature range we choose. We show a moderately large fully intrinsic AHC up to room temperature when the crystal is magnetized along the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>c</mi></math>-axis. Interestingly, the AHC can be tuned to completely extrinsic with extremely large values when the crystal is magnetized along the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi></math>-axis, regardless of whether the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi></math>-axis is magnetically easy or hard axis. First-principles calculations show that nodal line states originate from Mn-<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math> orbitals just below the Fermi energy (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>E</mi><mi mathvariant=\"normal\">F</mi></msub></math>) in the electronic band structure when the spins are oriented along the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>c</mi></math>-axis. Intrinsic AHC originates from the Berry curvature effect of the gapped nodal lines in the presence of spin-orbit coupling. AHC almost disappears when the spins are aligned along the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>a</mi></math>-axis because the nodal line states shift above <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>E</mi><mi mathvariant=\"normal\">F</mi></msub></math> and become unoccupied. Since the AHC can be tuned from fully extrinsic to intrinsic even at 300 K, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Sm</mi><msub><mi>Mn</mi><mn>2</mn></msub><msub><mi>Ge</mi><mn>2</mn></msub></mrow></math> becomes a potential candidate for room-temperature spintronics applications.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"9 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning intrinsic anomalous Hall effect from large to zero in two ferromagnetic states of SmMn2Ge2\",\"authors\":\"Mahima Singh, Jyotirmoy Sau, Banik Rai, Arunanshu Panda, Manoranjan Kumar, Nitesh Kumar\",\"doi\":\"10.1103/physrevmaterials.8.084201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intrinsic anomalous Hall conductivity (AHC) in a ferromagnetic metal is completely determined by its band structure. Since the spin orientation direction is an important band–structure tuning parameter, it is highly desirable to study the anomalous Hall effect in a system with multiple spin reorientation transitions. We study a layered tetragonal room temperature ferromagnet <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Sm</mi><msub><mi>Mn</mi><mn>2</mn></msub><msub><mi>Ge</mi><mn>2</mn></msub></mrow></math>, which gives us the opportunity to measure magnetotransport properties where the long <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>c</mi></math>-axis and the short <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>a</mi></math>-axis can both be magnetically easy axes depending on the temperature range we choose. We show a moderately large fully intrinsic AHC up to room temperature when the crystal is magnetized along the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>c</mi></math>-axis. Interestingly, the AHC can be tuned to completely extrinsic with extremely large values when the crystal is magnetized along the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>a</mi></math>-axis, regardless of whether the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>a</mi></math>-axis is magnetically easy or hard axis. First-principles calculations show that nodal line states originate from Mn-<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi></math> orbitals just below the Fermi energy (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>E</mi><mi mathvariant=\\\"normal\\\">F</mi></msub></math>) in the electronic band structure when the spins are oriented along the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>c</mi></math>-axis. Intrinsic AHC originates from the Berry curvature effect of the gapped nodal lines in the presence of spin-orbit coupling. AHC almost disappears when the spins are aligned along the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>a</mi></math>-axis because the nodal line states shift above <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>E</mi><mi mathvariant=\\\"normal\\\">F</mi></msub></math> and become unoccupied. Since the AHC can be tuned from fully extrinsic to intrinsic even at 300 K, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Sm</mi><msub><mi>Mn</mi><mn>2</mn></msub><msub><mi>Ge</mi><mn>2</mn></msub></mrow></math> becomes a potential candidate for room-temperature spintronics applications.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.084201\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.084201","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
铁磁金属的本征反常霍尔电导率(AHC)完全由其带状结构决定。由于自旋取向方向是一个重要的带状结构调整参数,因此研究具有多个自旋重新取向跃迁的体系中的反常霍尔效应是非常理想的。我们研究的是一种层状四方室温铁磁体 SmMn2Ge2,它为我们提供了测量磁传输特性的机会,根据我们选择的温度范围,长 c 轴和短 a 轴都可以是易磁轴。我们发现,当晶体沿 c 轴磁化时,在室温下会产生中等大小的完全本征 AHC。有趣的是,当晶体沿 a 轴磁化时,无论 a 轴是磁易轴还是磁硬轴,AHC 都能被调谐到完全外在的极大值。第一原理计算表明,当自旋沿 c 轴定向时,结线态源于电子能带结构中费米能(EF)正下方的 Mn-d 轨道。内在 AHC 源自存在自旋轨道耦合时间隙节点线的贝里曲率效应。当自旋沿 a 轴排列时,AHC 几乎消失,因为结线态转移到 EF 以上,成为空闲态。由于即使在 300 K 时也能将 AHC 从完全外在状态调整为内在状态,SmMn2Ge2 成为室温自旋电子学应用的潜在候选材料。
Tuning intrinsic anomalous Hall effect from large to zero in two ferromagnetic states of SmMn2Ge2
The intrinsic anomalous Hall conductivity (AHC) in a ferromagnetic metal is completely determined by its band structure. Since the spin orientation direction is an important band–structure tuning parameter, it is highly desirable to study the anomalous Hall effect in a system with multiple spin reorientation transitions. We study a layered tetragonal room temperature ferromagnet , which gives us the opportunity to measure magnetotransport properties where the long -axis and the short -axis can both be magnetically easy axes depending on the temperature range we choose. We show a moderately large fully intrinsic AHC up to room temperature when the crystal is magnetized along the -axis. Interestingly, the AHC can be tuned to completely extrinsic with extremely large values when the crystal is magnetized along the -axis, regardless of whether the -axis is magnetically easy or hard axis. First-principles calculations show that nodal line states originate from Mn- orbitals just below the Fermi energy () in the electronic band structure when the spins are oriented along the -axis. Intrinsic AHC originates from the Berry curvature effect of the gapped nodal lines in the presence of spin-orbit coupling. AHC almost disappears when the spins are aligned along the -axis because the nodal line states shift above and become unoccupied. Since the AHC can be tuned from fully extrinsic to intrinsic even at 300 K, becomes a potential candidate for room-temperature spintronics applications.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.