沸石晶体材料的知识图谱表示法

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-09-13 DOI:10.1039/D4DD00166D
Aleksandar Kondinski, Pavlo Rutkevych, Laura Pascazio, Dan N. Tran, Feroz Farazi, Srishti Ganguly and Markus Kraft
{"title":"沸石晶体材料的知识图谱表示法","authors":"Aleksandar Kondinski, Pavlo Rutkevych, Laura Pascazio, Dan N. Tran, Feroz Farazi, Srishti Ganguly and Markus Kraft","doi":"10.1039/D4DD00166D","DOIUrl":null,"url":null,"abstract":"<p >Zeolites are complex and porous crystalline inorganic materials that serve as hosts for a variety of molecular, ionic and cluster species. Formal, machine-actionable representation of this chemistry presents a challenge as a variety of concepts need to be semantically interlinked. This work demonstrates the potential of knowledge engineering in overcoming this challenge. We develop ontologies OntoCrystal and OntoZeolite, enabling the representation and instantiation of crystalline zeolite information into a dynamic, interoperable knowledge graph called The World Avatar (TWA). In TWA, crystalline zeolite instances are semantically interconnected with chemical species that act as guests in these materials. Information can be obtained <em>via</em> custom or templated SPARQL queries administered through a user-friendly web interface. Unstructured exploration is facilitated through natural language processing using the Marie System, showcasing promise for the blended large language model – knowledge graph approach in providing accurate responses on zeolite chemistry in natural language.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 10","pages":" 2070-2084"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00166d?page=search","citationCount":"0","resultStr":"{\"title\":\"Knowledge graph representation of zeolitic crystalline materials†\",\"authors\":\"Aleksandar Kondinski, Pavlo Rutkevych, Laura Pascazio, Dan N. Tran, Feroz Farazi, Srishti Ganguly and Markus Kraft\",\"doi\":\"10.1039/D4DD00166D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Zeolites are complex and porous crystalline inorganic materials that serve as hosts for a variety of molecular, ionic and cluster species. Formal, machine-actionable representation of this chemistry presents a challenge as a variety of concepts need to be semantically interlinked. This work demonstrates the potential of knowledge engineering in overcoming this challenge. We develop ontologies OntoCrystal and OntoZeolite, enabling the representation and instantiation of crystalline zeolite information into a dynamic, interoperable knowledge graph called The World Avatar (TWA). In TWA, crystalline zeolite instances are semantically interconnected with chemical species that act as guests in these materials. Information can be obtained <em>via</em> custom or templated SPARQL queries administered through a user-friendly web interface. Unstructured exploration is facilitated through natural language processing using the Marie System, showcasing promise for the blended large language model – knowledge graph approach in providing accurate responses on zeolite chemistry in natural language.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 10\",\"pages\":\" 2070-2084\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00166d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00166d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00166d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

沸石是一种复杂多孔的结晶无机材料,可作为各种分子、离子和团簇物种的宿主。由于各种概念需要在语义上相互关联,因此对这种化学性质进行正式的、机器可操作的表述是一项挑战。这项工作展示了知识工程在克服这一挑战方面的潜力。我们开发了本体论 OntoCrystal 和 OntoZeolite,使结晶沸石信息的表示和实例化成为一个动态、可互操作的知识图谱,称为 "世界阿凡达"(TWA)。在 TWA 中,结晶沸石实例与作为这些材料客体的化学物种在语义上相互关联。可通过用户友好的网络界面管理自定义或模板 SPARQL 查询来获取信息。通过使用玛丽系统进行自然语言处理,可以方便地进行非结构化探索,从而展示了混合大型语言模型-知识图谱方法在用自然语言提供沸石化学准确回复方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge graph representation of zeolitic crystalline materials†

Zeolites are complex and porous crystalline inorganic materials that serve as hosts for a variety of molecular, ionic and cluster species. Formal, machine-actionable representation of this chemistry presents a challenge as a variety of concepts need to be semantically interlinked. This work demonstrates the potential of knowledge engineering in overcoming this challenge. We develop ontologies OntoCrystal and OntoZeolite, enabling the representation and instantiation of crystalline zeolite information into a dynamic, interoperable knowledge graph called The World Avatar (TWA). In TWA, crystalline zeolite instances are semantically interconnected with chemical species that act as guests in these materials. Information can be obtained via custom or templated SPARQL queries administered through a user-friendly web interface. Unstructured exploration is facilitated through natural language processing using the Marie System, showcasing promise for the blended large language model – knowledge graph approach in providing accurate responses on zeolite chemistry in natural language.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover ArcaNN: automated enhanced sampling generation of training sets for chemically reactive machine learning interatomic potentials. Sorting polyolefins with near-infrared spectroscopy: identification of optimal data analysis pipelines and machine learning classifiers†‡ High accuracy uncertainty-aware interatomic force modeling with equivariant Bayesian neural networks† Correction: A smile is all you need: predicting limiting activity coefficients from SMILES with natural language processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1