电力系统中的气象信息概率预测和情景生成

Hanyu Zhang, Reza Zandehshahvar, Mathieu Tanneau, Pascal Van Hentenryck
{"title":"电力系统中的气象信息概率预测和情景生成","authors":"Hanyu Zhang, Reza Zandehshahvar, Mathieu Tanneau, Pascal Van Hentenryck","doi":"arxiv-2409.07637","DOIUrl":null,"url":null,"abstract":"The integration of renewable energy sources (RES) into power grids presents\nsignificant challenges due to their intrinsic stochasticity and uncertainty,\nnecessitating the development of new techniques for reliable and efficient\nforecasting. This paper proposes a method combining probabilistic forecasting\nand Gaussian copula for day-ahead prediction and scenario generation of load,\nwind, and solar power in high-dimensional contexts. By incorporating weather\ncovariates and restoring spatio-temporal correlations, the proposed method\nenhances the reliability of probabilistic forecasts in RES. Extensive numerical\nexperiments compare the effectiveness of different time series models, with\nperformance evaluated using comprehensive metrics on a real-world and\nhigh-dimensional dataset from Midcontinent Independent System Operator (MISO).\nThe results highlight the importance of weather information and demonstrate the\nefficacy of the Gaussian copula in generating realistic scenarios, with the\nproposed weather-informed Temporal Fusion Transformer (WI-TFT) model showing\nsuperior performance.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"183 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weather-Informed Probabilistic Forecasting and Scenario Generation in Power Systems\",\"authors\":\"Hanyu Zhang, Reza Zandehshahvar, Mathieu Tanneau, Pascal Van Hentenryck\",\"doi\":\"arxiv-2409.07637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of renewable energy sources (RES) into power grids presents\\nsignificant challenges due to their intrinsic stochasticity and uncertainty,\\nnecessitating the development of new techniques for reliable and efficient\\nforecasting. This paper proposes a method combining probabilistic forecasting\\nand Gaussian copula for day-ahead prediction and scenario generation of load,\\nwind, and solar power in high-dimensional contexts. By incorporating weather\\ncovariates and restoring spatio-temporal correlations, the proposed method\\nenhances the reliability of probabilistic forecasts in RES. Extensive numerical\\nexperiments compare the effectiveness of different time series models, with\\nperformance evaluated using comprehensive metrics on a real-world and\\nhigh-dimensional dataset from Midcontinent Independent System Operator (MISO).\\nThe results highlight the importance of weather information and demonstrate the\\nefficacy of the Gaussian copula in generating realistic scenarios, with the\\nproposed weather-informed Temporal Fusion Transformer (WI-TFT) model showing\\nsuperior performance.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于其固有的随机性和不确定性,将可再生能源(RES)并入电网面临着巨大挑战,因此有必要开发可靠、高效的预测新技术。本文提出了一种结合概率预测和高斯协库拉的方法,用于高维背景下负荷、风能和太阳能发电的日前预测和情景生成。通过纳入天气变量和恢复时空相关性,所提出的方法提高了可再生能源中概率预测的可靠性。广泛的数值实验比较了不同时间序列模型的有效性,并在中洲独立系统运营商(MISO)的真实高维数据集上使用综合指标对性能进行了评估。结果凸显了天气信息的重要性,并证明了高斯协方差在生成真实情景方面的有效性,而提出的天气信息时空融合变换器(WI-TFT)模型则显示出更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weather-Informed Probabilistic Forecasting and Scenario Generation in Power Systems
The integration of renewable energy sources (RES) into power grids presents significant challenges due to their intrinsic stochasticity and uncertainty, necessitating the development of new techniques for reliable and efficient forecasting. This paper proposes a method combining probabilistic forecasting and Gaussian copula for day-ahead prediction and scenario generation of load, wind, and solar power in high-dimensional contexts. By incorporating weather covariates and restoring spatio-temporal correlations, the proposed method enhances the reliability of probabilistic forecasts in RES. Extensive numerical experiments compare the effectiveness of different time series models, with performance evaluated using comprehensive metrics on a real-world and high-dimensional dataset from Midcontinent Independent System Operator (MISO). The results highlight the importance of weather information and demonstrate the efficacy of the Gaussian copula in generating realistic scenarios, with the proposed weather-informed Temporal Fusion Transformer (WI-TFT) model showing superior performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1