分子生成离散扩散模型的免训练指导

Thomas J. Kerby, Kevin R. Moon
{"title":"分子生成离散扩散模型的免训练指导","authors":"Thomas J. Kerby, Kevin R. Moon","doi":"arxiv-2409.07359","DOIUrl":null,"url":null,"abstract":"Training-free guidance methods for continuous data have seen an explosion of\ninterest due to the fact that they enable foundation diffusion models to be\npaired with interchangable guidance models. Currently, equivalent guidance\nmethods for discrete diffusion models are unknown. We present a framework for\napplying training-free guidance to discrete data and demonstrate its utility on\nmolecular graph generation tasks using the discrete diffusion model\narchitecture of DiGress. We pair this model with guidance functions that return\nthe proportion of heavy atoms that are a specific atom type and the molecular\nweight of the heavy atoms and demonstrate our method's ability to guide the\ndata generation.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Training-Free Guidance for Discrete Diffusion Models for Molecular Generation\",\"authors\":\"Thomas J. Kerby, Kevin R. Moon\",\"doi\":\"arxiv-2409.07359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Training-free guidance methods for continuous data have seen an explosion of\\ninterest due to the fact that they enable foundation diffusion models to be\\npaired with interchangable guidance models. Currently, equivalent guidance\\nmethods for discrete diffusion models are unknown. We present a framework for\\napplying training-free guidance to discrete data and demonstrate its utility on\\nmolecular graph generation tasks using the discrete diffusion model\\narchitecture of DiGress. We pair this model with guidance functions that return\\nthe proportion of heavy atoms that are a specific atom type and the molecular\\nweight of the heavy atoms and demonstrate our method's ability to guide the\\ndata generation.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

连续数据的免训练指导方法使基础扩散模型可以与可互换的指导模型配对,因此引起了人们的极大兴趣。目前,离散扩散模型的等效指导方法尚不为人知。我们提出了一种将免训练指导应用于离散数据的框架,并利用 DiGress 的离散扩散模型架构在分子图生成任务中演示了它的实用性。我们将该模型与返回特定原子类型的重原子比例和重原子分子量的指导函数配对,并演示了我们的方法指导数据生成的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Training-Free Guidance for Discrete Diffusion Models for Molecular Generation
Training-free guidance methods for continuous data have seen an explosion of interest due to the fact that they enable foundation diffusion models to be paired with interchangable guidance models. Currently, equivalent guidance methods for discrete diffusion models are unknown. We present a framework for applying training-free guidance to discrete data and demonstrate its utility on molecular graph generation tasks using the discrete diffusion model architecture of DiGress. We pair this model with guidance functions that return the proportion of heavy atoms that are a specific atom type and the molecular weight of the heavy atoms and demonstrate our method's ability to guide the data generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1