具有灵活个性化功能的联合 $mathcal{X}$-armed Bandit

Ali Arabzadeh, James A. Grant, David S. Leslie
{"title":"具有灵活个性化功能的联合 $mathcal{X}$-armed Bandit","authors":"Ali Arabzadeh, James A. Grant, David S. Leslie","doi":"arxiv-2409.07251","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel approach to personalised federated learning\nwithin the $\\mathcal{X}$-armed bandit framework, addressing the challenge of\noptimising both local and global objectives in a highly heterogeneous\nenvironment. Our method employs a surrogate objective function that combines\nindividual client preferences with aggregated global knowledge, allowing for a\nflexible trade-off between personalisation and collective learning. We propose\na phase-based elimination algorithm that achieves sublinear regret with\nlogarithmic communication overhead, making it well-suited for federated\nsettings. Theoretical analysis and empirical evaluations demonstrate the\neffectiveness of our approach compared to existing methods. Potential\napplications of this work span various domains, including healthcare, smart\nhome devices, and e-commerce, where balancing personalisation with global\ninsights is crucial.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated $\\\\mathcal{X}$-armed Bandit with Flexible Personalisation\",\"authors\":\"Ali Arabzadeh, James A. Grant, David S. Leslie\",\"doi\":\"arxiv-2409.07251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel approach to personalised federated learning\\nwithin the $\\\\mathcal{X}$-armed bandit framework, addressing the challenge of\\noptimising both local and global objectives in a highly heterogeneous\\nenvironment. Our method employs a surrogate objective function that combines\\nindividual client preferences with aggregated global knowledge, allowing for a\\nflexible trade-off between personalisation and collective learning. We propose\\na phase-based elimination algorithm that achieves sublinear regret with\\nlogarithmic communication overhead, making it well-suited for federated\\nsettings. Theoretical analysis and empirical evaluations demonstrate the\\neffectiveness of our approach compared to existing methods. Potential\\napplications of this work span various domains, including healthcare, smart\\nhome devices, and e-commerce, where balancing personalisation with global\\ninsights is crucial.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种在$\mathcal{X}$-armed bandit框架内进行个性化联合学习的新方法,以解决在高度异构环境中优化局部和全局目标的挑战。我们的方法采用了一种替代目标函数,该函数结合了个人客户偏好和聚合全局知识,允许在个性化和集体学习之间灵活权衡。我们提出了一种基于阶段的消除算法,它能以对数的通信开销实现亚线性遗憾,因此非常适合联合设置。理论分析和经验评估证明,与现有方法相比,我们的方法非常有效。这项工作的潜在应用领域涉及医疗保健、智能家居设备和电子商务等多个领域,在这些领域中,平衡个性化与全球洞察力至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Federated $\mathcal{X}$-armed Bandit with Flexible Personalisation
This paper introduces a novel approach to personalised federated learning within the $\mathcal{X}$-armed bandit framework, addressing the challenge of optimising both local and global objectives in a highly heterogeneous environment. Our method employs a surrogate objective function that combines individual client preferences with aggregated global knowledge, allowing for a flexible trade-off between personalisation and collective learning. We propose a phase-based elimination algorithm that achieves sublinear regret with logarithmic communication overhead, making it well-suited for federated settings. Theoretical analysis and empirical evaluations demonstrate the effectiveness of our approach compared to existing methods. Potential applications of this work span various domains, including healthcare, smart home devices, and e-commerce, where balancing personalisation with global insights is crucial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1