从最佳分数匹配到最佳抽样

Zehao Dou, Subhodh Kotekal, Zhehao Xu, Harrison H. Zhou
{"title":"从最佳分数匹配到最佳抽样","authors":"Zehao Dou, Subhodh Kotekal, Zhehao Xu, Harrison H. Zhou","doi":"arxiv-2409.07032","DOIUrl":null,"url":null,"abstract":"The recent, impressive advances in algorithmic generation of high-fidelity\nimage, audio, and video are largely due to great successes in score-based\ndiffusion models. A key implementing step is score matching, that is, the\nestimation of the score function of the forward diffusion process from training\ndata. As shown in earlier literature, the total variation distance between the\nlaw of a sample generated from the trained diffusion model and the ground truth\ndistribution can be controlled by the score matching risk. Despite the widespread use of score-based diffusion models, basic theoretical\nquestions concerning exact optimal statistical rates for score estimation and\nits application to density estimation remain open. We establish the sharp\nminimax rate of score estimation for smooth, compactly supported densities.\nFormally, given \\(n\\) i.i.d. samples from an unknown \\(\\alpha\\)-H\\\"{o}lder\ndensity \\(f\\) supported on \\([-1, 1]\\), we prove the minimax rate of estimating\nthe score function of the diffused distribution \\(f * \\mathcal{N}(0, t)\\) with\nrespect to the score matching loss is \\(\\frac{1}{nt^2} \\wedge\n\\frac{1}{nt^{3/2}} \\wedge (t^{\\alpha-1} + n^{-2(\\alpha-1)/(2\\alpha+1)})\\) for\nall \\(\\alpha > 0\\) and \\(t \\ge 0\\). As a consequence, it is shown the law\n\\(\\hat{f}\\) of a sample generated from the diffusion model achieves the sharp\nminimax rate \\(\\bE(\\dTV(\\hat{f}, f)^2) \\lesssim n^{-2\\alpha/(2\\alpha+1)}\\) for\nall \\(\\alpha > 0\\) without any extraneous logarithmic terms which are prevalent\nin the literature, and without the need for early stopping which has been\nrequired for all existing procedures to the best of our knowledge.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From optimal score matching to optimal sampling\",\"authors\":\"Zehao Dou, Subhodh Kotekal, Zhehao Xu, Harrison H. Zhou\",\"doi\":\"arxiv-2409.07032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent, impressive advances in algorithmic generation of high-fidelity\\nimage, audio, and video are largely due to great successes in score-based\\ndiffusion models. A key implementing step is score matching, that is, the\\nestimation of the score function of the forward diffusion process from training\\ndata. As shown in earlier literature, the total variation distance between the\\nlaw of a sample generated from the trained diffusion model and the ground truth\\ndistribution can be controlled by the score matching risk. Despite the widespread use of score-based diffusion models, basic theoretical\\nquestions concerning exact optimal statistical rates for score estimation and\\nits application to density estimation remain open. We establish the sharp\\nminimax rate of score estimation for smooth, compactly supported densities.\\nFormally, given \\\\(n\\\\) i.i.d. samples from an unknown \\\\(\\\\alpha\\\\)-H\\\\\\\"{o}lder\\ndensity \\\\(f\\\\) supported on \\\\([-1, 1]\\\\), we prove the minimax rate of estimating\\nthe score function of the diffused distribution \\\\(f * \\\\mathcal{N}(0, t)\\\\) with\\nrespect to the score matching loss is \\\\(\\\\frac{1}{nt^2} \\\\wedge\\n\\\\frac{1}{nt^{3/2}} \\\\wedge (t^{\\\\alpha-1} + n^{-2(\\\\alpha-1)/(2\\\\alpha+1)})\\\\) for\\nall \\\\(\\\\alpha > 0\\\\) and \\\\(t \\\\ge 0\\\\). As a consequence, it is shown the law\\n\\\\(\\\\hat{f}\\\\) of a sample generated from the diffusion model achieves the sharp\\nminimax rate \\\\(\\\\bE(\\\\dTV(\\\\hat{f}, f)^2) \\\\lesssim n^{-2\\\\alpha/(2\\\\alpha+1)}\\\\) for\\nall \\\\(\\\\alpha > 0\\\\) without any extraneous logarithmic terms which are prevalent\\nin the literature, and without the need for early stopping which has been\\nrequired for all existing procedures to the best of our knowledge.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,高保真图像、音频和视频的算法生成技术取得了令人瞩目的进步,这在很大程度上归功于基于分数的扩散模型所取得的巨大成功。一个关键的实现步骤是分数匹配,即从训练数据中估计前向扩散过程的分数函数。如早期文献所示,由训练好的扩散模型生成的样本规律与地面真实分布之间的总变异距离可由分数匹配风险控制。尽管基于分数的扩散模型得到了广泛应用,但有关分数估计的精确最优统计率及其在密度估计中的应用等基本理论问题仍未解决。我们建立了平滑、紧凑支撑密度的分数估计的锐敏最大率。形式上,给定(n)个 i i d 样本,这些样本来自一个未知的支持在([-1, 1])上的 \(α\)-H{o}lderdensity \(f\),我们证明相对于分数匹配损失,估计扩散分布 \(f*\mathcal{N}(0, t)\)的分数函数的最小率是(\frac{1}{nt^2})。\wedge\frac{1}{nt^{3/2}}\(t^{alpha-1} + n^{-2(\alpha-1)/(2\alpha+1)})\) forall \(\alpha > 0\) and\(t \ge 0\).结果表明,由扩散模型生成的样本的律(hat{f}\)达到了sharpminimax率(\bE(\dTV(\hat{f}、f)^2) \lesssim n^{-2\alpha/(2\alpha+1)}\) forall \(\alpha > 0\) without any extraneous logarithmic terms which are prevalent in the literature, and without the need for early stopping which has beenrequired for all existing procedures to the best of our knowledge.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From optimal score matching to optimal sampling
The recent, impressive advances in algorithmic generation of high-fidelity image, audio, and video are largely due to great successes in score-based diffusion models. A key implementing step is score matching, that is, the estimation of the score function of the forward diffusion process from training data. As shown in earlier literature, the total variation distance between the law of a sample generated from the trained diffusion model and the ground truth distribution can be controlled by the score matching risk. Despite the widespread use of score-based diffusion models, basic theoretical questions concerning exact optimal statistical rates for score estimation and its application to density estimation remain open. We establish the sharp minimax rate of score estimation for smooth, compactly supported densities. Formally, given \(n\) i.i.d. samples from an unknown \(\alpha\)-H\"{o}lder density \(f\) supported on \([-1, 1]\), we prove the minimax rate of estimating the score function of the diffused distribution \(f * \mathcal{N}(0, t)\) with respect to the score matching loss is \(\frac{1}{nt^2} \wedge \frac{1}{nt^{3/2}} \wedge (t^{\alpha-1} + n^{-2(\alpha-1)/(2\alpha+1)})\) for all \(\alpha > 0\) and \(t \ge 0\). As a consequence, it is shown the law \(\hat{f}\) of a sample generated from the diffusion model achieves the sharp minimax rate \(\bE(\dTV(\hat{f}, f)^2) \lesssim n^{-2\alpha/(2\alpha+1)}\) for all \(\alpha > 0\) without any extraneous logarithmic terms which are prevalent in the literature, and without the need for early stopping which has been required for all existing procedures to the best of our knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1