利用复杂性相关性改进预训练数据

Tristan Thrush, Christopher Potts, Tatsunori Hashimoto
{"title":"利用复杂性相关性改进预训练数据","authors":"Tristan Thrush, Christopher Potts, Tatsunori Hashimoto","doi":"arxiv-2409.05816","DOIUrl":null,"url":null,"abstract":"Quality pretraining data is often seen as the key to high-performance\nlanguage models. However, progress in understanding pretraining data has been\nslow due to the costly pretraining runs required for data selection\nexperiments. We present a framework that avoids these costs and selects\nhigh-quality pretraining data without any LLM training of our own. Our work is\nbased on a simple observation: LLM losses on many pretraining texts are\ncorrelated with downstream benchmark performance, and selecting\nhigh-correlation documents is an effective pretraining data selection method.\nWe build a new statistical framework for data selection centered around\nestimates of perplexity-benchmark correlations and perform data selection using\na sample of 90 LLMs taken from the Open LLM Leaderboard on texts from tens of\nthousands of web domains. In controlled pretraining experiments at the 160M\nparameter scale on 8 benchmarks, our approach outperforms DSIR on every\nbenchmark, while matching the best data selector found in DataComp-LM, a\nhand-engineered bigram classifier.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Pretraining Data Using Perplexity Correlations\",\"authors\":\"Tristan Thrush, Christopher Potts, Tatsunori Hashimoto\",\"doi\":\"arxiv-2409.05816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quality pretraining data is often seen as the key to high-performance\\nlanguage models. However, progress in understanding pretraining data has been\\nslow due to the costly pretraining runs required for data selection\\nexperiments. We present a framework that avoids these costs and selects\\nhigh-quality pretraining data without any LLM training of our own. Our work is\\nbased on a simple observation: LLM losses on many pretraining texts are\\ncorrelated with downstream benchmark performance, and selecting\\nhigh-correlation documents is an effective pretraining data selection method.\\nWe build a new statistical framework for data selection centered around\\nestimates of perplexity-benchmark correlations and perform data selection using\\na sample of 90 LLMs taken from the Open LLM Leaderboard on texts from tens of\\nthousands of web domains. In controlled pretraining experiments at the 160M\\nparameter scale on 8 benchmarks, our approach outperforms DSIR on every\\nbenchmark, while matching the best data selector found in DataComp-LM, a\\nhand-engineered bigram classifier.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高质量的预训练数据通常被视为高性能语言模型的关键。然而,由于数据选择实验需要高成本的预训练运行,因此在理解预训练数据方面进展缓慢。我们提出了一个框架,它可以避免这些成本,并在不进行任何 LLM 训练的情况下选择高质量的预训练数据。我们的工作基于一个简单的观察结果:我们构建了一个新的数据选择统计框架,该框架以对困惑度-基准相关性的估计为中心,并使用从开放 LLM 排行榜(Open LLM Leaderboard)中抽取的 90 个 LLM 样本,对来自数万个网络域的文本进行数据选择。在 8 个基准的 1.6 亿参数规模的受控预训练实验中,我们的方法在每个基准上的表现都优于 DSIR,同时与 DataComp-LM 中的最佳数据选择器(一种人工设计的 bigram 分类器)不相上下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Pretraining Data Using Perplexity Correlations
Quality pretraining data is often seen as the key to high-performance language models. However, progress in understanding pretraining data has been slow due to the costly pretraining runs required for data selection experiments. We present a framework that avoids these costs and selects high-quality pretraining data without any LLM training of our own. Our work is based on a simple observation: LLM losses on many pretraining texts are correlated with downstream benchmark performance, and selecting high-correlation documents is an effective pretraining data selection method. We build a new statistical framework for data selection centered around estimates of perplexity-benchmark correlations and perform data selection using a sample of 90 LLMs taken from the Open LLM Leaderboard on texts from tens of thousands of web domains. In controlled pretraining experiments at the 160M parameter scale on 8 benchmarks, our approach outperforms DSIR on every benchmark, while matching the best data selector found in DataComp-LM, a hand-engineered bigram classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1