利用随机优化和方差缩小改进树概率估计

Tianyu Xie, Musu Yuan, Minghua Deng, Cheng Zhang
{"title":"利用随机优化和方差缩小改进树概率估计","authors":"Tianyu Xie, Musu Yuan, Minghua Deng, Cheng Zhang","doi":"arxiv-2409.05282","DOIUrl":null,"url":null,"abstract":"Probability estimation of tree topologies is one of the fundamental tasks in\nphylogenetic inference. The recently proposed subsplit Bayesian networks (SBNs)\nprovide a powerful probabilistic graphical model for tree topology probability\nestimation by properly leveraging the hierarchical structure of phylogenetic\ntrees. However, the expectation maximization (EM) method currently used for\nlearning SBN parameters does not scale up to large data sets. In this paper, we\nintroduce several computationally efficient methods for training SBNs and show\nthat variance reduction could be the key for better performance. Furthermore,\nwe also introduce the variance reduction technique to improve the optimization\nof SBN parameters for variational Bayesian phylogenetic inference (VBPI).\nExtensive synthetic and real data experiments demonstrate that our methods\noutperform previous baseline methods on the tasks of tree topology probability\nestimation as well as Bayesian phylogenetic inference using SBNs.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Tree Probability Estimation with Stochastic Optimization and Variance Reduction\",\"authors\":\"Tianyu Xie, Musu Yuan, Minghua Deng, Cheng Zhang\",\"doi\":\"arxiv-2409.05282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probability estimation of tree topologies is one of the fundamental tasks in\\nphylogenetic inference. The recently proposed subsplit Bayesian networks (SBNs)\\nprovide a powerful probabilistic graphical model for tree topology probability\\nestimation by properly leveraging the hierarchical structure of phylogenetic\\ntrees. However, the expectation maximization (EM) method currently used for\\nlearning SBN parameters does not scale up to large data sets. In this paper, we\\nintroduce several computationally efficient methods for training SBNs and show\\nthat variance reduction could be the key for better performance. Furthermore,\\nwe also introduce the variance reduction technique to improve the optimization\\nof SBN parameters for variational Bayesian phylogenetic inference (VBPI).\\nExtensive synthetic and real data experiments demonstrate that our methods\\noutperform previous baseline methods on the tasks of tree topology probability\\nestimation as well as Bayesian phylogenetic inference using SBNs.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

树拓扑的概率估计是系统发育推断的基本任务之一。最近提出的子分裂贝叶斯网络(SBN)通过适当利用系统树的层次结构,为树拓扑概率估计提供了一个强大的概率图形模型。然而,目前用于学习 SBN 参数的期望最大化(EM)方法无法扩展到大型数据集。在本文中,我们介绍了几种高效计算的 SBNs 训练方法,并证明方差缩小可能是提高性能的关键。广泛的合成和真实数据实验证明,我们的方法在树拓扑概率估计以及使用 SBN 的贝叶斯系统发育推断任务上优于以前的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Tree Probability Estimation with Stochastic Optimization and Variance Reduction
Probability estimation of tree topologies is one of the fundamental tasks in phylogenetic inference. The recently proposed subsplit Bayesian networks (SBNs) provide a powerful probabilistic graphical model for tree topology probability estimation by properly leveraging the hierarchical structure of phylogenetic trees. However, the expectation maximization (EM) method currently used for learning SBN parameters does not scale up to large data sets. In this paper, we introduce several computationally efficient methods for training SBNs and show that variance reduction could be the key for better performance. Furthermore, we also introduce the variance reduction technique to improve the optimization of SBN parameters for variational Bayesian phylogenetic inference (VBPI). Extensive synthetic and real data experiments demonstrate that our methods outperform previous baseline methods on the tasks of tree topology probability estimation as well as Bayesian phylogenetic inference using SBNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1