Christina Diamanti, Lambros Nousis, Petros Bozidis, Michalis Koureas, Maria Kyritsi, George Markozannes, Nikolaos Simantiris, Eirini Panteli, Anastasia Koutsolioutsou, Konstantinos Tsilidis, Christos Hadjichristodoulou, Alexandra Koutsotoli, Eirini Christaki, Dimitrios Alivertis, Aristides Bartzokas, Konstantina Gartzonika, Chrysostomos Dovas, Evangelia Ntzani
{"title":"SARS-CoV-2 的废水监测:两种浓度方法的比较","authors":"Christina Diamanti, Lambros Nousis, Petros Bozidis, Michalis Koureas, Maria Kyritsi, George Markozannes, Nikolaos Simantiris, Eirini Panteli, Anastasia Koutsolioutsou, Konstantinos Tsilidis, Christos Hadjichristodoulou, Alexandra Koutsotoli, Eirini Christaki, Dimitrios Alivertis, Aristides Bartzokas, Konstantina Gartzonika, Chrysostomos Dovas, Evangelia Ntzani","doi":"10.3390/v16091398","DOIUrl":null,"url":null,"abstract":"Wastewater surveillance is crucial for the epidemiological monitoring of SARS-CoV-2. Various concentration techniques, such as skimmed milk flocculation (SMF) and polyethylene glycol (PEG) precipitation, are employed to isolate the virus effectively. This study aims to compare these two methods and determine the one with the superior recovery rates. From February to December 2021, 24-h wastewater samples were collected from the Ioannina Wastewater Treatment Plant’s inlet and processed using both techniques. Subsequent viral genome isolation and a real-time RT-qPCR detection of SARS-CoV-2 were performed. The quantitative analysis demonstrated a higher detection sensitivity with a PEG-based concentration than SMF. Moreover, when the samples were positive by both methods, PEG consistently yielded higher viral loads. These findings underscore the need for further research into concentration methodologies and the development of precise protocols to enhance epidemiological surveillance through wastewater analysis.","PeriodicalId":501326,"journal":{"name":"Viruses","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wastewater Surveillance of SARS-CoV-2: A Comparison of Two Concentration Methods\",\"authors\":\"Christina Diamanti, Lambros Nousis, Petros Bozidis, Michalis Koureas, Maria Kyritsi, George Markozannes, Nikolaos Simantiris, Eirini Panteli, Anastasia Koutsolioutsou, Konstantinos Tsilidis, Christos Hadjichristodoulou, Alexandra Koutsotoli, Eirini Christaki, Dimitrios Alivertis, Aristides Bartzokas, Konstantina Gartzonika, Chrysostomos Dovas, Evangelia Ntzani\",\"doi\":\"10.3390/v16091398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wastewater surveillance is crucial for the epidemiological monitoring of SARS-CoV-2. Various concentration techniques, such as skimmed milk flocculation (SMF) and polyethylene glycol (PEG) precipitation, are employed to isolate the virus effectively. This study aims to compare these two methods and determine the one with the superior recovery rates. From February to December 2021, 24-h wastewater samples were collected from the Ioannina Wastewater Treatment Plant’s inlet and processed using both techniques. Subsequent viral genome isolation and a real-time RT-qPCR detection of SARS-CoV-2 were performed. The quantitative analysis demonstrated a higher detection sensitivity with a PEG-based concentration than SMF. Moreover, when the samples were positive by both methods, PEG consistently yielded higher viral loads. These findings underscore the need for further research into concentration methodologies and the development of precise protocols to enhance epidemiological surveillance through wastewater analysis.\",\"PeriodicalId\":501326,\"journal\":{\"name\":\"Viruses\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viruses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/v16091398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/v16091398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wastewater Surveillance of SARS-CoV-2: A Comparison of Two Concentration Methods
Wastewater surveillance is crucial for the epidemiological monitoring of SARS-CoV-2. Various concentration techniques, such as skimmed milk flocculation (SMF) and polyethylene glycol (PEG) precipitation, are employed to isolate the virus effectively. This study aims to compare these two methods and determine the one with the superior recovery rates. From February to December 2021, 24-h wastewater samples were collected from the Ioannina Wastewater Treatment Plant’s inlet and processed using both techniques. Subsequent viral genome isolation and a real-time RT-qPCR detection of SARS-CoV-2 were performed. The quantitative analysis demonstrated a higher detection sensitivity with a PEG-based concentration than SMF. Moreover, when the samples were positive by both methods, PEG consistently yielded higher viral loads. These findings underscore the need for further research into concentration methodologies and the development of precise protocols to enhance epidemiological surveillance through wastewater analysis.