测定真空烧结混合增强 Al-4Cu 复合材料的机械和摩擦学特性

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Journal of Composite Materials Pub Date : 2024-09-04 DOI:10.1177/00219983241283599
Üsame Ali Usca, Serhat Şap, Mahir Uzun, Ünal Değirmenci
{"title":"测定真空烧结混合增强 Al-4Cu 复合材料的机械和摩擦学特性","authors":"Üsame Ali Usca, Serhat Şap, Mahir Uzun, Ünal Değirmenci","doi":"10.1177/00219983241283599","DOIUrl":null,"url":null,"abstract":"This study aims to modernize commonly preferred hybrid aluminum composites in the automotive and defense industries. For this purpose, Al-4Cu/B<jats:sub>4</jats:sub>C-SiC hybrid composites were manufactured using the hot pressing method and their microstructure, mechanical, and tribological properties were investigated. SEM/EDS analyses of the samples were conducted to examine morphological characteristics. Hardness, relative density, and three-point bending tests were performed on the produced samples. Additionally, wear tests were conducted under dry sliding conditions and different loads (5-10-15 N) to investigate tribological properties. The addition of hybrid reinforcements resulted in high hardness (88.54 HB) and relative density (98.83%) values. The highest bending stress (556.9 MPa) was observed in sample AC-4 (Al-4Cu/2B<jats:sub>4</jats:sub>C-2SiC). The lowest mass loss (1.1 × 10<jats:sup>−3</jats:sup> g) was encountered in sample AC-6 (Al-4Cu/6B<jats:sub>4</jats:sub>C-6SiC), where all reinforcements were present together. Plastic deformation, oxidation, and residual wear mechanisms were identified on the worn surfaces of the samples. Consequently, the addition of hybrid reinforcements to Al-4Cu composites shows promising potential in enhancing the mechanical and tribological performance of the composites.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of mechanical and tribological properties of vacuum sintered hybrid reinforced Al-4Cu composites\",\"authors\":\"Üsame Ali Usca, Serhat Şap, Mahir Uzun, Ünal Değirmenci\",\"doi\":\"10.1177/00219983241283599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to modernize commonly preferred hybrid aluminum composites in the automotive and defense industries. For this purpose, Al-4Cu/B<jats:sub>4</jats:sub>C-SiC hybrid composites were manufactured using the hot pressing method and their microstructure, mechanical, and tribological properties were investigated. SEM/EDS analyses of the samples were conducted to examine morphological characteristics. Hardness, relative density, and three-point bending tests were performed on the produced samples. Additionally, wear tests were conducted under dry sliding conditions and different loads (5-10-15 N) to investigate tribological properties. The addition of hybrid reinforcements resulted in high hardness (88.54 HB) and relative density (98.83%) values. The highest bending stress (556.9 MPa) was observed in sample AC-4 (Al-4Cu/2B<jats:sub>4</jats:sub>C-2SiC). The lowest mass loss (1.1 × 10<jats:sup>−3</jats:sup> g) was encountered in sample AC-6 (Al-4Cu/6B<jats:sub>4</jats:sub>C-6SiC), where all reinforcements were present together. Plastic deformation, oxidation, and residual wear mechanisms were identified on the worn surfaces of the samples. Consequently, the addition of hybrid reinforcements to Al-4Cu composites shows promising potential in enhancing the mechanical and tribological performance of the composites.\",\"PeriodicalId\":15489,\"journal\":{\"name\":\"Journal of Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00219983241283599\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241283599","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在将汽车和国防工业中常用的混合铝复合材料现代化。为此,采用热压方法制造了 Al-4Cu/B4C-SiC 混合复合材料,并对其微观结构、机械和摩擦学性能进行了研究。对样品进行了 SEM/EDS 分析,以检查形态特征。对制备的样品进行了硬度、相对密度和三点弯曲测试。此外,还在干燥滑动条件和不同载荷(5-10-15 N)下进行了磨损测试,以研究摩擦学特性。添加混合增强剂后,硬度(88.54 HB)和相对密度(98.83%)值都很高。在样品 AC-4(Al-4Cu/2B4C-2SiC)中观察到了最高的弯曲应力(556.9 兆帕)。样品 AC-6(Al-4Cu/6B4C-6SiC)的质量损失最小(1.1 × 10-3 g),其中所有增强材料都一起存在。在样品的磨损表面发现了塑性变形、氧化和残余磨损机制。因此,在 Al-4Cu 复合材料中添加混合增强材料有望提高复合材料的机械和摩擦学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of mechanical and tribological properties of vacuum sintered hybrid reinforced Al-4Cu composites
This study aims to modernize commonly preferred hybrid aluminum composites in the automotive and defense industries. For this purpose, Al-4Cu/B4C-SiC hybrid composites were manufactured using the hot pressing method and their microstructure, mechanical, and tribological properties were investigated. SEM/EDS analyses of the samples were conducted to examine morphological characteristics. Hardness, relative density, and three-point bending tests were performed on the produced samples. Additionally, wear tests were conducted under dry sliding conditions and different loads (5-10-15 N) to investigate tribological properties. The addition of hybrid reinforcements resulted in high hardness (88.54 HB) and relative density (98.83%) values. The highest bending stress (556.9 MPa) was observed in sample AC-4 (Al-4Cu/2B4C-2SiC). The lowest mass loss (1.1 × 10−3 g) was encountered in sample AC-6 (Al-4Cu/6B4C-6SiC), where all reinforcements were present together. Plastic deformation, oxidation, and residual wear mechanisms were identified on the worn surfaces of the samples. Consequently, the addition of hybrid reinforcements to Al-4Cu composites shows promising potential in enhancing the mechanical and tribological performance of the composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Composite Materials
Journal of Composite Materials 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.90%
发文量
274
审稿时长
6.8 months
期刊介绍: Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Micromechanics-based multi-scale framework with strain-rate effects for the simulation of ballistic impact on composite laminates Recycling catfish bone for additive manufacturing of silicone composite structures Mechanical performances of unsatured polyester composite reinforced by OleaEuropea var. Sylvestris fibers: Characterization, modeling and optimization of fiber textural properties Elastic properties identification of a bio-based material in tertiary packaging: Tools and methods development Parametric process optimisation of automated fibre placement (AFP) based AS4/APC-2 composites for mode I and mode II fracture toughness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1