Fei He, Hongwei An, Marco Ghisalberti, Scott Draper, Chengjiao Ren, Paul Branson, Liang Cheng
{"title":"障碍物布置可控制通过多孔障碍物的水流","authors":"Fei He, Hongwei An, Marco Ghisalberti, Scott Draper, Chengjiao Ren, Paul Branson, Liang Cheng","doi":"10.1017/jfm.2024.510","DOIUrl":null,"url":null,"abstract":"Previous work suggests that the arrangement of elements in an obstruction may influence the bulk flow velocity through the obstruction, but the physical mechanisms for this influence are not yet clear. This is the motivation for this study, where direct numerical simulation is used to investigate flow through an array of cylinders at a resolution sufficient to observe interactions between wakes of individual elements. The arrangement is altered by varying the gap ratio <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400510X_inline2ab.png\"/> <jats:tex-math>$G/d$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (1.2 – 18, <jats:italic>G</jats:italic> is the distance between two adjacent cylinders, <jats:italic>d</jats:italic> is the cylinder diameter), array-to-element diameter ratio <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400510X_inline2gf.png\"/> <jats:tex-math>$D/d$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (3.6 – 200, <jats:italic>D</jats:italic> is the array diameter), and incident flow angle (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400510X_inline2b.png\"/> <jats:tex-math>$0^{\\circ} - 30^{\\circ}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>). Depending on the element arrangement, it is found that the average root-mean-square lift and drag coefficients can vary by an order of magnitude, whilst the average time-mean drag coefficient of individual cylinders (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400510X_inline2c.png\"/> <jats:tex-math>$\\overline{C_{d}}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>), and the bulk velocity are found to vary by up to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400510X_inline2d.png\"/> <jats:tex-math>$50\\,\\%$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and a factor of 2, respectively. These arrangement effects are a consequence of the variation in flow and drag characteristics of individual cylinders within the array. The arrangement effects become most critical in the intermediate range of flow blockage parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400510X_inline2e.png\"/> <jats:tex-math>$\\mathit{\\Gamma_{D}^{\\prime}} = 0.5-1.5$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400510X_inline2eqew.png\"/> <jats:tex-math>$\\mathit{\\Gamma_{D}^{\\prime}}=\\overline{C_{d}}aD/(1-\\phi)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>a</jats:italic> is frontal element area per unit volume, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002211202400510X_inline2f.png\"/> <jats:tex-math>$\\phi$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is solid volume fraction), due to the high variability in element-scale flow characteristics. Across the full range of arrangements modelled, it is confirmed that the bulk velocity is governed by flow blockage parameter but only if the drag coefficient incorporates arrangement effects. Using these results, this paper proposes a framework for describing and predicting flow through an array across a variety of arrangements.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"175 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Obstacle arrangement can control flows through porous obstructions\",\"authors\":\"Fei He, Hongwei An, Marco Ghisalberti, Scott Draper, Chengjiao Ren, Paul Branson, Liang Cheng\",\"doi\":\"10.1017/jfm.2024.510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous work suggests that the arrangement of elements in an obstruction may influence the bulk flow velocity through the obstruction, but the physical mechanisms for this influence are not yet clear. This is the motivation for this study, where direct numerical simulation is used to investigate flow through an array of cylinders at a resolution sufficient to observe interactions between wakes of individual elements. The arrangement is altered by varying the gap ratio <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S002211202400510X_inline2ab.png\\\"/> <jats:tex-math>$G/d$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (1.2 – 18, <jats:italic>G</jats:italic> is the distance between two adjacent cylinders, <jats:italic>d</jats:italic> is the cylinder diameter), array-to-element diameter ratio <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S002211202400510X_inline2gf.png\\\"/> <jats:tex-math>$D/d$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (3.6 – 200, <jats:italic>D</jats:italic> is the array diameter), and incident flow angle (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S002211202400510X_inline2b.png\\\"/> <jats:tex-math>$0^{\\\\circ} - 30^{\\\\circ}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>). Depending on the element arrangement, it is found that the average root-mean-square lift and drag coefficients can vary by an order of magnitude, whilst the average time-mean drag coefficient of individual cylinders (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S002211202400510X_inline2c.png\\\"/> <jats:tex-math>$\\\\overline{C_{d}}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>), and the bulk velocity are found to vary by up to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S002211202400510X_inline2d.png\\\"/> <jats:tex-math>$50\\\\,\\\\%$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and a factor of 2, respectively. These arrangement effects are a consequence of the variation in flow and drag characteristics of individual cylinders within the array. The arrangement effects become most critical in the intermediate range of flow blockage parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S002211202400510X_inline2e.png\\\"/> <jats:tex-math>$\\\\mathit{\\\\Gamma_{D}^{\\\\prime}} = 0.5-1.5$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S002211202400510X_inline2eqew.png\\\"/> <jats:tex-math>$\\\\mathit{\\\\Gamma_{D}^{\\\\prime}}=\\\\overline{C_{d}}aD/(1-\\\\phi)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>a</jats:italic> is frontal element area per unit volume, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S002211202400510X_inline2f.png\\\"/> <jats:tex-math>$\\\\phi$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is solid volume fraction), due to the high variability in element-scale flow characteristics. Across the full range of arrangements modelled, it is confirmed that the bulk velocity is governed by flow blockage parameter but only if the drag coefficient incorporates arrangement effects. Using these results, this paper proposes a framework for describing and predicting flow through an array across a variety of arrangements.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"175 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.510\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.510","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Obstacle arrangement can control flows through porous obstructions
Previous work suggests that the arrangement of elements in an obstruction may influence the bulk flow velocity through the obstruction, but the physical mechanisms for this influence are not yet clear. This is the motivation for this study, where direct numerical simulation is used to investigate flow through an array of cylinders at a resolution sufficient to observe interactions between wakes of individual elements. The arrangement is altered by varying the gap ratio $G/d$ (1.2 – 18, G is the distance between two adjacent cylinders, d is the cylinder diameter), array-to-element diameter ratio $D/d$ (3.6 – 200, D is the array diameter), and incident flow angle ($0^{\circ} - 30^{\circ}$). Depending on the element arrangement, it is found that the average root-mean-square lift and drag coefficients can vary by an order of magnitude, whilst the average time-mean drag coefficient of individual cylinders ($\overline{C_{d}}$), and the bulk velocity are found to vary by up to $50\,\%$ and a factor of 2, respectively. These arrangement effects are a consequence of the variation in flow and drag characteristics of individual cylinders within the array. The arrangement effects become most critical in the intermediate range of flow blockage parameter $\mathit{\Gamma_{D}^{\prime}} = 0.5-1.5$ ($\mathit{\Gamma_{D}^{\prime}}=\overline{C_{d}}aD/(1-\phi)$, where a is frontal element area per unit volume, and $\phi$ is solid volume fraction), due to the high variability in element-scale flow characteristics. Across the full range of arrangements modelled, it is confirmed that the bulk velocity is governed by flow blockage parameter but only if the drag coefficient incorporates arrangement effects. Using these results, this paper proposes a framework for describing and predicting flow through an array across a variety of arrangements.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.