湍流对圆盘沉降动力学的影响

IF 3.6 2区 工程技术 Q1 MECHANICS Journal of Fluid Mechanics Pub Date : 2024-08-27 DOI:10.1017/jfm.2024.534
Amy Tinklenberg, Michele Guala, Filippo Coletti
{"title":"湍流对圆盘沉降动力学的影响","authors":"Amy Tinklenberg, Michele Guala, Filippo Coletti","doi":"10.1017/jfm.2024.534","DOIUrl":null,"url":null,"abstract":"Turbulence can have a strong effect on the fall speed of snowflakes and ice crystals. In this experimental study, the behaviour of thin disks falling in homogeneous turbulence is investigated, in a range of parameters relevant to plate crystals. Disks ranging in diameter from 0.3 to 3 mm, and in Reynolds number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005342_inline1.png\"/> <jats:tex-math>$Re = 10\\unicode{x2013}435$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, are dispersed in two air turbulence levels, with velocity fluctuations comparable to the terminal velocity. For each case, thousands of trajectories are captured and reconstructed by high-speed laser imaging, allowing for statistical analysis of the translational and rotational dynamics. Air turbulence reduces the disk terminal velocities by up to 35 %, with the largest diameters influenced most significantly, which is primarily attributed to drag nonlinearity. This is evidenced by large lateral excursions of the trajectories, which correlate with cross-flow-induced drag enhancement as reported previously for falling spheres and rising bubbles. As the turbulence intensity is increased, flat-falling behaviour is progressively eliminated and tumbling becomes prevalent. The rotation rates of the tumbling disks, however, remain similar to those displayed in still air. This is due to their large moment of inertia compared to the surrounding fluid, in stark contrast with studies conducted in water. In fact, the observed reduction of settling velocity is opposite to previous findings on disks falling in turbulent water. This emphasizes the importance of the solid-to-fluid density ratio in analogous experiments that aim to mimic the behaviour of frozen hydrometeors.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"31 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulence effect on disk settling dynamics\",\"authors\":\"Amy Tinklenberg, Michele Guala, Filippo Coletti\",\"doi\":\"10.1017/jfm.2024.534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Turbulence can have a strong effect on the fall speed of snowflakes and ice crystals. In this experimental study, the behaviour of thin disks falling in homogeneous turbulence is investigated, in a range of parameters relevant to plate crystals. Disks ranging in diameter from 0.3 to 3 mm, and in Reynolds number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005342_inline1.png\\\"/> <jats:tex-math>$Re = 10\\\\unicode{x2013}435$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, are dispersed in two air turbulence levels, with velocity fluctuations comparable to the terminal velocity. For each case, thousands of trajectories are captured and reconstructed by high-speed laser imaging, allowing for statistical analysis of the translational and rotational dynamics. Air turbulence reduces the disk terminal velocities by up to 35 %, with the largest diameters influenced most significantly, which is primarily attributed to drag nonlinearity. This is evidenced by large lateral excursions of the trajectories, which correlate with cross-flow-induced drag enhancement as reported previously for falling spheres and rising bubbles. As the turbulence intensity is increased, flat-falling behaviour is progressively eliminated and tumbling becomes prevalent. The rotation rates of the tumbling disks, however, remain similar to those displayed in still air. This is due to their large moment of inertia compared to the surrounding fluid, in stark contrast with studies conducted in water. In fact, the observed reduction of settling velocity is opposite to previous findings on disks falling in turbulent water. This emphasizes the importance of the solid-to-fluid density ratio in analogous experiments that aim to mimic the behaviour of frozen hydrometeors.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.534\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.534","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

湍流对雪花和冰晶的下落速度有很大影响。在这项实验研究中,研究了薄圆盘在均质湍流中的下落行为,其参数范围与板状晶体相关。直径在 0.3 到 3 毫米之间、雷诺数为 $Re = 10\unicode{x2013}435$ 的圆盘分散在两个空气湍流级别中,其速度波动与末端速度相当。在每种情况下,通过高速激光成像捕捉并重建了数千条轨迹,从而对平移和旋转动力学进行了统计分析。空气湍流使圆盘的末端速度降低了 35%,最大直径的圆盘受到的影响最大,这主要归因于阻力非线性。轨迹的大幅横向偏移证明了这一点,这与之前报告的下降球体和上升气泡的横流诱导阻力增强相关。随着湍流强度的增加,平落行为逐渐消失,翻滚变得普遍。然而,翻滚盘的旋转率仍与静止空气中的旋转率相似。这是因为与周围流体相比,它们的惯性矩较大,这与在水中进行的研究形成了鲜明对比。事实上,观察到的沉降速度降低与之前在湍流水中的圆盘沉降研究结果相反。这强调了在旨在模拟冰冻水介质行为的类似实验中,固体与流体密度比的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Turbulence effect on disk settling dynamics
Turbulence can have a strong effect on the fall speed of snowflakes and ice crystals. In this experimental study, the behaviour of thin disks falling in homogeneous turbulence is investigated, in a range of parameters relevant to plate crystals. Disks ranging in diameter from 0.3 to 3 mm, and in Reynolds number $Re = 10\unicode{x2013}435$ , are dispersed in two air turbulence levels, with velocity fluctuations comparable to the terminal velocity. For each case, thousands of trajectories are captured and reconstructed by high-speed laser imaging, allowing for statistical analysis of the translational and rotational dynamics. Air turbulence reduces the disk terminal velocities by up to 35 %, with the largest diameters influenced most significantly, which is primarily attributed to drag nonlinearity. This is evidenced by large lateral excursions of the trajectories, which correlate with cross-flow-induced drag enhancement as reported previously for falling spheres and rising bubbles. As the turbulence intensity is increased, flat-falling behaviour is progressively eliminated and tumbling becomes prevalent. The rotation rates of the tumbling disks, however, remain similar to those displayed in still air. This is due to their large moment of inertia compared to the surrounding fluid, in stark contrast with studies conducted in water. In fact, the observed reduction of settling velocity is opposite to previous findings on disks falling in turbulent water. This emphasizes the importance of the solid-to-fluid density ratio in analogous experiments that aim to mimic the behaviour of frozen hydrometeors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
期刊最新文献
Flagellum Pumping Efficiency in Shear-Thinning Viscoelastic Fluids. Particle chirality does not matter in the large-scale features of strong turbulence. Parametric oscillations of the sessile drop Detachment of leading-edge vortex enhances wake capture force production Self-similarity and the direct (enstrophy) cascade in forced two-dimensional fluid turbulence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1