球帽微电极的钝化以及与微盘的比较:数值模拟和实验

IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Journal of Solid State Electrochemistry Pub Date : 2024-08-13 DOI:10.1007/s10008-024-06038-7
Koolsiriphorn Shiengjen, Chatuporn Phanthong, Werasak Surareungchai, Mithran Somasundrum
{"title":"球帽微电极的钝化以及与微盘的比较:数值模拟和实验","authors":"Koolsiriphorn Shiengjen,&nbsp;Chatuporn Phanthong,&nbsp;Werasak Surareungchai,&nbsp;Mithran Somasundrum","doi":"10.1007/s10008-024-06038-7","DOIUrl":null,"url":null,"abstract":"<div><p>As a model of passivation at a micro or nanoparticle, we have modelled a passivating reaction at a microelectrode of hemispherical geometry. The reaction is considered to lead to either the formation of a surface-bound species or diffusion of product into bulk solution. A dimensionless parameter, <i>p</i>, of value 0 to 1.0 can be used to describe the balance between the two processes. We have simulated the first two linear sweep voltammograms (LSV) under different values of <i>p</i> and have simulated the peak width of the first LSV under different values of scan rate and <i>p</i>. These simulations were used to relate the peak width to the value of <i>p</i>. The results were compared to the characteristics of passivation at a microdisk electrode. The equation was used to analyse the oxidation of dopamine at hemispherical Ga electrodes, fabricated by the deposition of liquid phase Ga onto Pt microdisks.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"28 11","pages":"4345 - 4352"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Passivation at a spherical cap microelectrode and comparison to a microdisk: Numerical simulation and experiment\",\"authors\":\"Koolsiriphorn Shiengjen,&nbsp;Chatuporn Phanthong,&nbsp;Werasak Surareungchai,&nbsp;Mithran Somasundrum\",\"doi\":\"10.1007/s10008-024-06038-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a model of passivation at a micro or nanoparticle, we have modelled a passivating reaction at a microelectrode of hemispherical geometry. The reaction is considered to lead to either the formation of a surface-bound species or diffusion of product into bulk solution. A dimensionless parameter, <i>p</i>, of value 0 to 1.0 can be used to describe the balance between the two processes. We have simulated the first two linear sweep voltammograms (LSV) under different values of <i>p</i> and have simulated the peak width of the first LSV under different values of scan rate and <i>p</i>. These simulations were used to relate the peak width to the value of <i>p</i>. The results were compared to the characteristics of passivation at a microdisk electrode. The equation was used to analyse the oxidation of dopamine at hemispherical Ga electrodes, fabricated by the deposition of liquid phase Ga onto Pt microdisks.</p></div>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":\"28 11\",\"pages\":\"4345 - 4352\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10008-024-06038-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06038-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

作为微型或纳米粒子的钝化模型,我们模拟了半球形微电极的钝化反应。该反应被认为会导致表面结合物种的形成或产物扩散到大体积溶液中。无量纲参数 p 的值为 0 至 1.0,可用来描述这两个过程之间的平衡。我们模拟了不同 p 值下的前两个线性扫描伏安图 (LSV),并模拟了不同扫描速率和 p 值下第一个 LSV 的峰值宽度。该方程用于分析多巴胺在半球形镓电极上的氧化情况,半球形镓电极是通过在铂微盘上沉积液相镓而制成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Passivation at a spherical cap microelectrode and comparison to a microdisk: Numerical simulation and experiment

As a model of passivation at a micro or nanoparticle, we have modelled a passivating reaction at a microelectrode of hemispherical geometry. The reaction is considered to lead to either the formation of a surface-bound species or diffusion of product into bulk solution. A dimensionless parameter, p, of value 0 to 1.0 can be used to describe the balance between the two processes. We have simulated the first two linear sweep voltammograms (LSV) under different values of p and have simulated the peak width of the first LSV under different values of scan rate and p. These simulations were used to relate the peak width to the value of p. The results were compared to the characteristics of passivation at a microdisk electrode. The equation was used to analyse the oxidation of dopamine at hemispherical Ga electrodes, fabricated by the deposition of liquid phase Ga onto Pt microdisks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
4.00%
发文量
227
审稿时长
4.1 months
期刊介绍: The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry. The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces. The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis. The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.
期刊最新文献
Voltammetric determination of hydroxymethylfurfural in honey using screen-printed carbon electrodes: optimization and in-house validation tests Comparative analysis of pH sensing performance of nitrogen-doped ZnO on screen-printed silver and carbon electrodes Effect of electrodeposition of AuPt nanostructure thin films on the electrocatalytic activity of counter electrodes: DSSCs application Study of superhydrophobicity and corrosion resistance of electrodeposited Zn-Ni-HDTMS coating Screen-printed carbon electrode modified with AgNPs obtained via green synthesis for acetaminophen determination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1