围绕半球形圆柱体的涡旋振荡机制

IF 3.6 2区 工程技术 Q1 MECHANICS Journal of Fluid Mechanics Pub Date : 2024-08-14 DOI:10.1017/jfm.2024.526
Zhou-Yang Wang, Bao-Feng Ma
{"title":"围绕半球形圆柱体的涡旋振荡机制","authors":"Zhou-Yang Wang, Bao-Feng Ma","doi":"10.1017/jfm.2024.526","DOIUrl":null,"url":null,"abstract":"Previous studies have shown that low-frequency vortex oscillations occur around a hemisphere–cylinder body at different angles of attack, but the underlying mechanism is still unclear. In this study, we examine the origin of the vortex oscillation using numerical simulations and global linear stability analysis. The vortex oscillation is reproduced using numerical simulations, and the oscillatory modes are computed through dynamic mode decomposition (DMD). We obtain the base flow through a selective frequency damping method, which exhibits a pair of steady leeward vortices over the body. The four unstable modes are computed using a modified Arnoldi iteration. The antisymmetric mode with a Strouhal number of 0.105 is discovered to be responsible for the alternate oscillation of the vortex pair, and the mode with a Strouhal number of 0.220 corresponds to the in-phase vortex oscillation. Their frequencies have good agreement with the modes of DMD. The other two unstable modes with higher frequencies, one antisymmetric and one symmetric, are harmonic frequencies of the above two modes. The study conclusively verifies that the vortex oscillation over a hemisphere–cylinder body originates from a global flow instability.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"2 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of vortex oscillation around a hemisphere–cylinder body\",\"authors\":\"Zhou-Yang Wang, Bao-Feng Ma\",\"doi\":\"10.1017/jfm.2024.526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies have shown that low-frequency vortex oscillations occur around a hemisphere–cylinder body at different angles of attack, but the underlying mechanism is still unclear. In this study, we examine the origin of the vortex oscillation using numerical simulations and global linear stability analysis. The vortex oscillation is reproduced using numerical simulations, and the oscillatory modes are computed through dynamic mode decomposition (DMD). We obtain the base flow through a selective frequency damping method, which exhibits a pair of steady leeward vortices over the body. The four unstable modes are computed using a modified Arnoldi iteration. The antisymmetric mode with a Strouhal number of 0.105 is discovered to be responsible for the alternate oscillation of the vortex pair, and the mode with a Strouhal number of 0.220 corresponds to the in-phase vortex oscillation. Their frequencies have good agreement with the modes of DMD. The other two unstable modes with higher frequencies, one antisymmetric and one symmetric, are harmonic frequencies of the above two modes. The study conclusively verifies that the vortex oscillation over a hemisphere–cylinder body originates from a global flow instability.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.526\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.526","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

以往的研究表明,在不同的攻角下,半球形气缸体周围会出现低频涡旋振荡,但其基本机制仍不清楚。在本研究中,我们利用数值模拟和全局线性稳定性分析研究了涡旋振荡的起源。通过数值模拟再现了涡旋振荡,并通过动态模式分解(DMD)计算了振荡模式。我们通过选择性频率阻尼法获得了基流,基流在主体上方呈现出一对稳定的背风涡旋。四种不稳定模态采用改进的阿诺德迭代法计算。发现斯特劳哈尔数为 0.105 的非对称模态负责涡旋对的交替振荡,斯特劳哈尔数为 0.220 的模态对应于同相涡旋振荡。它们的频率与 DMD 的模式十分吻合。另外两个频率较高的不稳定模式,一个是反对称模式,一个是对称模式,是上述两个模式的谐波频率。这项研究最终验证了半球形圆柱体上的涡旋振荡源于全局流动不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanism of vortex oscillation around a hemisphere–cylinder body
Previous studies have shown that low-frequency vortex oscillations occur around a hemisphere–cylinder body at different angles of attack, but the underlying mechanism is still unclear. In this study, we examine the origin of the vortex oscillation using numerical simulations and global linear stability analysis. The vortex oscillation is reproduced using numerical simulations, and the oscillatory modes are computed through dynamic mode decomposition (DMD). We obtain the base flow through a selective frequency damping method, which exhibits a pair of steady leeward vortices over the body. The four unstable modes are computed using a modified Arnoldi iteration. The antisymmetric mode with a Strouhal number of 0.105 is discovered to be responsible for the alternate oscillation of the vortex pair, and the mode with a Strouhal number of 0.220 corresponds to the in-phase vortex oscillation. Their frequencies have good agreement with the modes of DMD. The other two unstable modes with higher frequencies, one antisymmetric and one symmetric, are harmonic frequencies of the above two modes. The study conclusively verifies that the vortex oscillation over a hemisphere–cylinder body originates from a global flow instability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
期刊最新文献
Flagellum Pumping Efficiency in Shear-Thinning Viscoelastic Fluids. Particle chirality does not matter in the large-scale features of strong turbulence. Parametric oscillations of the sessile drop Detachment of leading-edge vortex enhances wake capture force production Self-similarity and the direct (enstrophy) cascade in forced two-dimensional fluid turbulence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1