Laura J. García-Barrera, Stefani A. Meza-Zamora, Juan C. Noa-Carrazana, Raúl J. Delgado-Macuil
{"title":"利用红外光谱和 PCA-LDA 进行化学计量分析,早期诊断番茄中的镰孢菌","authors":"Laura J. García-Barrera, Stefani A. Meza-Zamora, Juan C. Noa-Carrazana, Raúl J. Delgado-Macuil","doi":"10.1007/s41348-024-00978-y","DOIUrl":null,"url":null,"abstract":"<p>The interaction of phytopathogenic organisms and plants generates physiological and biochemical changes in the latter. However, the effects on the plants are rarely visible in the infection first stages. Novel optical techniques can help to improve the early detection of phytopathogenic organisms in tomato without the plant sacrifice. In this work, infrared spectroscopy and chemometric methods were used to determinate the effects of <i>Fusarium oxysporum</i> in tomato plants cultivated in pots, analyzing fully expanded leaves. <i>Fusarium oxysporum</i> was molecular identified and its pathogenicity was tested in vitro. Three plants treatments were evaluated for 55 days post infection in pots in greenhouse under semi-controlled conditions: control, water stress, and fungal inoculated (1 × 10<sup>8</sup> conidia/mL). Phenotypical results were followed twice a week for eight weeks; the phenotypical characteristics were very similar in almost all sampling times except in height, especially in the first 27 days post infection, after this time the height was similar in the three treatments. The stalk and root-dried matter analysis do not show statistical differences; however, the infrared results, acquired from the adaxial surface of leaves, show differences in peaks associated with salicylic acid, jasmonic acid, abscisic acid, and proline in the first 27 days post infection. The principal component analysis–linear discriminant analysis were used to distinguish subtle biochemical changes between the three treatments, facilitating the early detection of the pathogen and its monitoring over time.</p>","PeriodicalId":16838,"journal":{"name":"Journal of Plant Diseases and Protection","volume":"19 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemometric analysis using infrared spectroscopy and PCA-LDA for early diagnosis of Fusarium oxysporum in tomato\",\"authors\":\"Laura J. García-Barrera, Stefani A. Meza-Zamora, Juan C. Noa-Carrazana, Raúl J. Delgado-Macuil\",\"doi\":\"10.1007/s41348-024-00978-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The interaction of phytopathogenic organisms and plants generates physiological and biochemical changes in the latter. However, the effects on the plants are rarely visible in the infection first stages. Novel optical techniques can help to improve the early detection of phytopathogenic organisms in tomato without the plant sacrifice. In this work, infrared spectroscopy and chemometric methods were used to determinate the effects of <i>Fusarium oxysporum</i> in tomato plants cultivated in pots, analyzing fully expanded leaves. <i>Fusarium oxysporum</i> was molecular identified and its pathogenicity was tested in vitro. Three plants treatments were evaluated for 55 days post infection in pots in greenhouse under semi-controlled conditions: control, water stress, and fungal inoculated (1 × 10<sup>8</sup> conidia/mL). Phenotypical results were followed twice a week for eight weeks; the phenotypical characteristics were very similar in almost all sampling times except in height, especially in the first 27 days post infection, after this time the height was similar in the three treatments. The stalk and root-dried matter analysis do not show statistical differences; however, the infrared results, acquired from the adaxial surface of leaves, show differences in peaks associated with salicylic acid, jasmonic acid, abscisic acid, and proline in the first 27 days post infection. The principal component analysis–linear discriminant analysis were used to distinguish subtle biochemical changes between the three treatments, facilitating the early detection of the pathogen and its monitoring over time.</p>\",\"PeriodicalId\":16838,\"journal\":{\"name\":\"Journal of Plant Diseases and Protection\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Diseases and Protection\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s41348-024-00978-y\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Diseases and Protection","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s41348-024-00978-y","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Chemometric analysis using infrared spectroscopy and PCA-LDA for early diagnosis of Fusarium oxysporum in tomato
The interaction of phytopathogenic organisms and plants generates physiological and biochemical changes in the latter. However, the effects on the plants are rarely visible in the infection first stages. Novel optical techniques can help to improve the early detection of phytopathogenic organisms in tomato without the plant sacrifice. In this work, infrared spectroscopy and chemometric methods were used to determinate the effects of Fusarium oxysporum in tomato plants cultivated in pots, analyzing fully expanded leaves. Fusarium oxysporum was molecular identified and its pathogenicity was tested in vitro. Three plants treatments were evaluated for 55 days post infection in pots in greenhouse under semi-controlled conditions: control, water stress, and fungal inoculated (1 × 108 conidia/mL). Phenotypical results were followed twice a week for eight weeks; the phenotypical characteristics were very similar in almost all sampling times except in height, especially in the first 27 days post infection, after this time the height was similar in the three treatments. The stalk and root-dried matter analysis do not show statistical differences; however, the infrared results, acquired from the adaxial surface of leaves, show differences in peaks associated with salicylic acid, jasmonic acid, abscisic acid, and proline in the first 27 days post infection. The principal component analysis–linear discriminant analysis were used to distinguish subtle biochemical changes between the three treatments, facilitating the early detection of the pathogen and its monitoring over time.
期刊介绍:
The Journal of Plant Diseases and Protection (JPDP) is an international scientific journal that publishes original research articles, reviews, short communications, position and opinion papers dealing with applied scientific aspects of plant pathology, plant health, plant protection and findings on newly occurring diseases and pests. "Special Issues" on coherent themes often arising from International Conferences are offered.