咖啡因、锌及其联合处理对番茄茄属植物生长、产量、矿物质元素和多酚的影响

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Antioxidants Pub Date : 2024-09-11 DOI:10.3390/antiox13091100
Elena Vichi, Alessandra Francini, Andrea Raffaelli, Luca Sebastiani
{"title":"咖啡因、锌及其联合处理对番茄茄属植物生长、产量、矿物质元素和多酚的影响","authors":"Elena Vichi, Alessandra Francini, Andrea Raffaelli, Luca Sebastiani","doi":"10.3390/antiox13091100","DOIUrl":null,"url":null,"abstract":"(1) Background: The effects of Zn and caffeine as promoters of fruit quality in the Solanum lycopersicum L. cultivar ‘Panarea’ were tested. (2) Methods: During the 56 days of the experiment, plants were treated weekly with 100 mL of 1 mM Zn (Zn), 1 mg L−1 caffeine trimethyl-13C (caffeine), and 1 mM Zn + 1 mg L−1 caffeine trimethyl-13C (Zn + caffeine) and compared to plants that were given tap water (control). (3) Results: Caffeine was taken up by the roots and translocated to the leaves, which positively influenced the number of fruits per plant. After 56 days of treatment, Zn induced a positive increase in tomato dry weight, reducing shoot length (−16.7%) compared to the other treatments. Zn + caffeine had a positive effect on the phenylpropanoid pathway of fruits, and 4-coumaric acid, caffeic acid, and t-ferulic acid were significantly increased, as well as the total antioxidant capacity of the tomatoes. In the flavonoid pathway, only apigenin and luteolin contents were reduced by treatments. The tomatoes showed similar concentrations of the mineral elements Cu, Mn, Fe, Na, Ca, Mg, and K. The Zn and caffeine target hazard quotients were <1, indicating that health risks via the consumption of these tomatoes did not occur. (4) Conclusions: Tomato plants could be irrigated with water containing lower values of Zn, caffeine, and a combination of the two. The treated fruits are rich in antioxidant compounds, such as coumaric acid, caffeic acid, and t-ferulic acid, which are beneficial for human health. No considerable health risks associated with human consumption have been detected.","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Caffeine, Zinc, and Their Combined Treatments on the Growth, Yield, Mineral Elements, and Polyphenols of Solanum lycopersicum L.\",\"authors\":\"Elena Vichi, Alessandra Francini, Andrea Raffaelli, Luca Sebastiani\",\"doi\":\"10.3390/antiox13091100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(1) Background: The effects of Zn and caffeine as promoters of fruit quality in the Solanum lycopersicum L. cultivar ‘Panarea’ were tested. (2) Methods: During the 56 days of the experiment, plants were treated weekly with 100 mL of 1 mM Zn (Zn), 1 mg L−1 caffeine trimethyl-13C (caffeine), and 1 mM Zn + 1 mg L−1 caffeine trimethyl-13C (Zn + caffeine) and compared to plants that were given tap water (control). (3) Results: Caffeine was taken up by the roots and translocated to the leaves, which positively influenced the number of fruits per plant. After 56 days of treatment, Zn induced a positive increase in tomato dry weight, reducing shoot length (−16.7%) compared to the other treatments. Zn + caffeine had a positive effect on the phenylpropanoid pathway of fruits, and 4-coumaric acid, caffeic acid, and t-ferulic acid were significantly increased, as well as the total antioxidant capacity of the tomatoes. In the flavonoid pathway, only apigenin and luteolin contents were reduced by treatments. The tomatoes showed similar concentrations of the mineral elements Cu, Mn, Fe, Na, Ca, Mg, and K. The Zn and caffeine target hazard quotients were <1, indicating that health risks via the consumption of these tomatoes did not occur. (4) Conclusions: Tomato plants could be irrigated with water containing lower values of Zn, caffeine, and a combination of the two. The treated fruits are rich in antioxidant compounds, such as coumaric acid, caffeic acid, and t-ferulic acid, which are beneficial for human health. No considerable health risks associated with human consumption have been detected.\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox13091100\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox13091100","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

(1) 背景:测试了锌和咖啡因对茄果类栽培品种 "Panarea "果实品质的促进作用。(2) 方法:在 56 天的实验过程中,每周用 100 mL 1 mM Zn(锌)、1 mg L-1 咖啡因三甲基-13C(咖啡因)和 1 mM Zn + 1 mg L-1 咖啡因三甲基-13C(锌 + 咖啡因)处理植株,并与给予自来水(对照)的植株进行比较。(3) 结果:咖啡因被根部吸收并转移到叶片,这对每株植物的果实数量产生了积极影响。处理 56 天后,与其他处理相比,锌诱导番茄干重增加,但芽长减少(-16.7%)。锌+咖啡因对果实的苯丙氨酸途径有积极影响,4-香豆酸、咖啡酸和 t-阿魏酸显著增加,番茄的总抗氧化能力也显著增加。在类黄酮途径中,只有芹菜素和木犀草素的含量因处理而降低。西红柿中铜、锰、铁、鈉、钙、镁和钾等矿物质元素的含量相似。锌和咖啡因的目标危害商数小于 1,表明食用这些西红柿不会对健康造成危害。(4) 结论:番茄植株可以使用锌、咖啡因含量较低的水进行灌溉,也可以使用这两种物质的组合进行灌溉。经过处理的水果富含香豆酸、咖啡酸和 t-阿魏酸等抗氧化化合物,对人体健康有益。目前尚未发现与人类食用相关的重大健康风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Caffeine, Zinc, and Their Combined Treatments on the Growth, Yield, Mineral Elements, and Polyphenols of Solanum lycopersicum L.
(1) Background: The effects of Zn and caffeine as promoters of fruit quality in the Solanum lycopersicum L. cultivar ‘Panarea’ were tested. (2) Methods: During the 56 days of the experiment, plants were treated weekly with 100 mL of 1 mM Zn (Zn), 1 mg L−1 caffeine trimethyl-13C (caffeine), and 1 mM Zn + 1 mg L−1 caffeine trimethyl-13C (Zn + caffeine) and compared to plants that were given tap water (control). (3) Results: Caffeine was taken up by the roots and translocated to the leaves, which positively influenced the number of fruits per plant. After 56 days of treatment, Zn induced a positive increase in tomato dry weight, reducing shoot length (−16.7%) compared to the other treatments. Zn + caffeine had a positive effect on the phenylpropanoid pathway of fruits, and 4-coumaric acid, caffeic acid, and t-ferulic acid were significantly increased, as well as the total antioxidant capacity of the tomatoes. In the flavonoid pathway, only apigenin and luteolin contents were reduced by treatments. The tomatoes showed similar concentrations of the mineral elements Cu, Mn, Fe, Na, Ca, Mg, and K. The Zn and caffeine target hazard quotients were <1, indicating that health risks via the consumption of these tomatoes did not occur. (4) Conclusions: Tomato plants could be irrigated with water containing lower values of Zn, caffeine, and a combination of the two. The treated fruits are rich in antioxidant compounds, such as coumaric acid, caffeic acid, and t-ferulic acid, which are beneficial for human health. No considerable health risks associated with human consumption have been detected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antioxidants
Antioxidants Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍: Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Cookies Fortified with Polyphenols Extracts: Impact on Phenolic Content, Antioxidant Activity, Inhibition of α-Amylase and α-Glucosidase Enzyme, Colour and Sensory Attractiveness Oxidative Stress and Age-Related Tumors Indole-3-Carboxaldehyde Alleviates LPS-Induced Intestinal Inflammation by Inhibiting ROS Production and NLRP3 Inflammasome Activation Effects of Caffeine, Zinc, and Their Combined Treatments on the Growth, Yield, Mineral Elements, and Polyphenols of Solanum lycopersicum L. Role of Phytochemicals in Treatment of Aging and Cancer: Focus on Mechanism of FOXO3 Activation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1