聚合物复合膜中的粘土粉提高了直接甲醇燃料电池的性能

Md. Anwarul Karim, Sharmin Sultana Dipti, Mohammad Mahfuz Enam Elahi
{"title":"聚合物复合膜中的粘土粉提高了直接甲醇燃料电池的性能","authors":"Md. Anwarul Karim, Sharmin Sultana Dipti, Mohammad Mahfuz Enam Elahi","doi":"10.1177/09673911241275302","DOIUrl":null,"url":null,"abstract":"Polyvinyl alcohol has the potential to be used in fuel cell membranes due to its chemical, mechanical, and membrane-forming capabilities, as well as its higher hydrophilicity and low methanol permeability. However, the pure PVA membrane has a lower proton conductivity than the Nafion<jats:sup>TM</jats:sup> membrane. With the addition of some ceramic fillers, PVA can be a possible alternative to Nafion<jats:sup>TM</jats:sup> membranes. Therefore, we used the solution method to prepare three polyvinyl alcohol-based composite membranes with the following compositions: a) 5 wt% PVA (polyvinyl alcohol), b) 5 wt% PVA/2 wt % PEG (polyethylene glycol)/wt.1% silicon dioxide (SiO<jats:sub>2</jats:sub>) nanoparticles, and c) 5 wt% PVA/2 wt% PEG/wt.1% clay powder. The membranes were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy dispersive X-ray (EDX), oxidative stability, ion exchange capacity, water absorption characteristics, conductivity, and permeability. FITR, EDX, and SEM confirmed the successful fabrication of the composite membrane, while TGA demonstrated membrane thermal stability and other parameters relevant to fuel cell membranes. The methanol permeability of the membrane is pure 5 wt % PVA, 5 wt%PVA/2 wt%/1 wt% SiO<jats:sub>2</jats:sub>, and 5 wt% PVA/2 wt% PEG/wt.1% Clay measured 2.37 × 10<jats:sup>−6</jats:sup> cm<jats:sup>2</jats:sup>/s, 2.89 × 10<jats:sup>−6</jats:sup> cm<jats:sup>2</jats:sup>/s, and 1.57 × 10<jats:sup>−6</jats:sup> cm<jats:sup>2</jats:sup>/s, respectively. The methanol permeability of 5 wt% PVA/2 wt% PEG/wt.1% Clay is better than of Nafion117 (5.16 × 10<jats:sup>−6</jats:sup> cm<jats:sup>2</jats:sup>/s as reported). The membrane 5 wt% PVA/2 wt% PEG/1% Clay exhibits satisfactory levels of oxidative stability (RW% = 94.09 at 1.32 h), IEC (0.232 meq/g), conductivity (0.00432 S/cm), methanol permeability (1.57 × 10<jats:sup>−6</jats:sup> cm<jats:sup>2</jats:sup>/s), selectivity (3.63 × 10<jats:sup>−4</jats:sup> Ss/cm<jats:sup>3</jats:sup>), and better water uptake properties at fuel cell operating temperature. As a result, it is reasonable to expect that PVA-based modified membranes will outperform Nafion<jats:sup>TM</jats:sup> membranes in the future.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clay powder in polymer composite membranes enhanced the performance of direct methanol fuel cells\",\"authors\":\"Md. Anwarul Karim, Sharmin Sultana Dipti, Mohammad Mahfuz Enam Elahi\",\"doi\":\"10.1177/09673911241275302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyvinyl alcohol has the potential to be used in fuel cell membranes due to its chemical, mechanical, and membrane-forming capabilities, as well as its higher hydrophilicity and low methanol permeability. However, the pure PVA membrane has a lower proton conductivity than the Nafion<jats:sup>TM</jats:sup> membrane. With the addition of some ceramic fillers, PVA can be a possible alternative to Nafion<jats:sup>TM</jats:sup> membranes. Therefore, we used the solution method to prepare three polyvinyl alcohol-based composite membranes with the following compositions: a) 5 wt% PVA (polyvinyl alcohol), b) 5 wt% PVA/2 wt % PEG (polyethylene glycol)/wt.1% silicon dioxide (SiO<jats:sub>2</jats:sub>) nanoparticles, and c) 5 wt% PVA/2 wt% PEG/wt.1% clay powder. The membranes were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy dispersive X-ray (EDX), oxidative stability, ion exchange capacity, water absorption characteristics, conductivity, and permeability. FITR, EDX, and SEM confirmed the successful fabrication of the composite membrane, while TGA demonstrated membrane thermal stability and other parameters relevant to fuel cell membranes. The methanol permeability of the membrane is pure 5 wt % PVA, 5 wt%PVA/2 wt%/1 wt% SiO<jats:sub>2</jats:sub>, and 5 wt% PVA/2 wt% PEG/wt.1% Clay measured 2.37 × 10<jats:sup>−6</jats:sup> cm<jats:sup>2</jats:sup>/s, 2.89 × 10<jats:sup>−6</jats:sup> cm<jats:sup>2</jats:sup>/s, and 1.57 × 10<jats:sup>−6</jats:sup> cm<jats:sup>2</jats:sup>/s, respectively. The methanol permeability of 5 wt% PVA/2 wt% PEG/wt.1% Clay is better than of Nafion117 (5.16 × 10<jats:sup>−6</jats:sup> cm<jats:sup>2</jats:sup>/s as reported). The membrane 5 wt% PVA/2 wt% PEG/1% Clay exhibits satisfactory levels of oxidative stability (RW% = 94.09 at 1.32 h), IEC (0.232 meq/g), conductivity (0.00432 S/cm), methanol permeability (1.57 × 10<jats:sup>−6</jats:sup> cm<jats:sup>2</jats:sup>/s), selectivity (3.63 × 10<jats:sup>−4</jats:sup> Ss/cm<jats:sup>3</jats:sup>), and better water uptake properties at fuel cell operating temperature. As a result, it is reasonable to expect that PVA-based modified membranes will outperform Nafion<jats:sup>TM</jats:sup> membranes in the future.\",\"PeriodicalId\":20417,\"journal\":{\"name\":\"Polymers and Polymer Composites\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers and Polymer Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09673911241275302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers and Polymer Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09673911241275302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚乙烯醇因其化学、机械和成膜能力,以及较高的亲水性和较低的甲醇渗透性,有潜力用于燃料电池膜。然而,纯 PVA 膜的质子传导性低于 NafionTM 膜。如果添加一些陶瓷填料,PVA 有可能成为 NafionTM 膜的替代品。因此,我们采用溶液法制备了三种聚乙烯醇基复合膜,其组成如下:a) 5 wt% PVA(聚乙烯醇);b) 5 wt% PVA/2 wt% PEG(聚乙二醇)/wt.1% 二氧化硅(SiO2)纳米颗粒;c) 5 wt% PVA/2 wt% PEG/wt.1% 粘土粉。使用傅立叶变换红外光谱(FTIR)、热重分析(TGA)、扫描电子显微镜(SEM)、能量色散 X 射线(EDX)、氧化稳定性、离子交换能力、吸水特性、电导率和渗透性对膜进行了表征。FITR、EDX 和 SEM 证实了复合膜的成功制造,而 TGA 则证明了膜的热稳定性以及与燃料电池膜相关的其他参数。纯 5 wt% PVA、5 wt%PVA/2 wt%/1 wt% SiO2 和 5 wt% PVA/2 wt% PEG/wt.1% Clay 膜的甲醇渗透率分别为 2.37 × 10-6 cm2/s、2.89 × 10-6 cm2/s 和 1.57 × 10-6 cm2/s。5 wt% PVA/2 wt% PEG/wt.1% Clay 的甲醇渗透性优于 Nafion117(5.16 × 10-6 cm2/s)。5 wt% PVA/2 wt% PEG/1% Clay 膜的氧化稳定性(1.32 h 时的 RW% = 94.09)、IEC(0.232 meq/g)、电导率(0.00432 S/cm)、甲醇渗透性(1.57 × 10-6 cm2/s)、选择性(3.63 × 10-4 Ss/cm3)都达到了令人满意的水平,并且在燃料电池工作温度下具有更好的吸水性能。因此,我们有理由期待基于 PVA 的改性膜在未来的性能会优于 NafionTM 膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clay powder in polymer composite membranes enhanced the performance of direct methanol fuel cells
Polyvinyl alcohol has the potential to be used in fuel cell membranes due to its chemical, mechanical, and membrane-forming capabilities, as well as its higher hydrophilicity and low methanol permeability. However, the pure PVA membrane has a lower proton conductivity than the NafionTM membrane. With the addition of some ceramic fillers, PVA can be a possible alternative to NafionTM membranes. Therefore, we used the solution method to prepare three polyvinyl alcohol-based composite membranes with the following compositions: a) 5 wt% PVA (polyvinyl alcohol), b) 5 wt% PVA/2 wt % PEG (polyethylene glycol)/wt.1% silicon dioxide (SiO2) nanoparticles, and c) 5 wt% PVA/2 wt% PEG/wt.1% clay powder. The membranes were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy dispersive X-ray (EDX), oxidative stability, ion exchange capacity, water absorption characteristics, conductivity, and permeability. FITR, EDX, and SEM confirmed the successful fabrication of the composite membrane, while TGA demonstrated membrane thermal stability and other parameters relevant to fuel cell membranes. The methanol permeability of the membrane is pure 5 wt % PVA, 5 wt%PVA/2 wt%/1 wt% SiO2, and 5 wt% PVA/2 wt% PEG/wt.1% Clay measured 2.37 × 10−6 cm2/s, 2.89 × 10−6 cm2/s, and 1.57 × 10−6 cm2/s, respectively. The methanol permeability of 5 wt% PVA/2 wt% PEG/wt.1% Clay is better than of Nafion117 (5.16 × 10−6 cm2/s as reported). The membrane 5 wt% PVA/2 wt% PEG/1% Clay exhibits satisfactory levels of oxidative stability (RW% = 94.09 at 1.32 h), IEC (0.232 meq/g), conductivity (0.00432 S/cm), methanol permeability (1.57 × 10−6 cm2/s), selectivity (3.63 × 10−4 Ss/cm3), and better water uptake properties at fuel cell operating temperature. As a result, it is reasonable to expect that PVA-based modified membranes will outperform NafionTM membranes in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling and characterising FFF process of semi-crystalline polymers: Warpage formation and mechanism analysis Machine learning non-isothermal study of the blade coating process (NIS-BCP) using non-Newtonian nanofluid with magnetohydrodynamic (MHD) and slip effects Performance of polyurethane and polyurethane nanocomposites modified by graphene, carbon nanotubes, and fumed silica in dry and wet environments Effect of hybrid weaving patterns on mechanical performance of 3D woven structures Investigation of effects of bis(2-hydroxyethyl) terephthalate derived from glycolysis of polyethylene terephthalate on the properties of flexible polyurethane foam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1